15 research outputs found

    Study on reasonable advancing speed of fully-mechanized top-coal caving face in mining contugous extra-thick coal seams in rockburst mine

    Get PDF
    In view of the rock burst problem caused by too fast advancing speed of the working face, taking the mining of W1123 fully mechanized top coal caving face in contugous extra-thick coal seam in Kuangou Coal Mine as the background, the comprehensive analysis method of numerical simulation and theoretical analysis is adopted. By studying the mining stress and energy evolution characteristics of coal and rock under the influence of different advancing speeds, the characteristics of overlying strata movement and breaking at different advancing speeds are analyzed, and the burst risk of coal and rock mass under the influence of different advancing speeds is evaluated. The reasonable advancing speed of the working face is determined by comprehensive research. The results show that the peak stress of front abutment pressure caused by mining in the working face shows an obvious nonlinear increase trend with the increase of advancing speed, and its increase rate gradually increases. The mining stress level under solid coal is obviously higher than that under goaf, and the front abutment pressure shows an obvious double peak shape. With the increase of advancing speed, the initial breaking distance of overburden and the elastic energy accumulated in overburden obviously increase, and the strain energy density also gradually increases. The displacement of overlying strata increases sharply with the advancing speed, and the damage range is large, showing obvious discontinuous deformation characteristics. At the same time, the faster the advancing speed, the larger the influence range of overlying strata breakage, and the more severe the migration evolution. With the increase of advancing speed, the burst risk index of coal and rock in working face increases obviously, and the risk of mining under solid coal is far greater than that under goaf. The burst risk index of 100 m behind the setup room of overlying coal seam rises sharply with the increase of advancing speed, which is a high-risk area with bursts. According to the results of numerical simulation, it is considered that the relative suitable advancing speed of W1123 working face should be no more than 6.4 m/d on the premise of ensuring safe and efficient production. The research results provide scientific guidance for safe and efficient mining of rock burst prone mines in coal seams occur in close proximity

    Numerical Study on the Pressure Relief Characteristics of a Large-Diameter Borehole

    No full text
    Large-diameter drilling is an effective method for preventing rock burst disasters in coal mines. In this paper, the roadway stability of the W1123 fully mechanized caving work face of the Kuangou coal mine, located in northwest China, is investigated. A set of numerical modelling techniques were carried out to study the characteristics of stress, displacement, strain energy and the plastic zone of the roadway side rock with different parameters, including the large-diameter drilling hole diameter, depth and spacing. The results showed that: (1) after drilling, the peak values of the stress and strain energy are reduced and transferred to a deeper location, and the control effect presents a positive correlation with the diameter of the drilling hole; (2) when Lh LP, there are no pressure relief and energy release effects, which may induce impact, whereas when LP Lh ≤ 2.5LP, with the increase of the hole depth, the effects of pressure relief and energy release are enhanced, and further extension is not conducive to the long-term stability of the roadway; and (3) when the hole spacing decreases, the plastic zone and the broken zone between the holes are gradually penetrated, and the stress pattern transforms from a double peak to a saddle shape and then to single peak. Reducing the hole diameter reduces the efficiency of the plastic zone, failure zone and the stress form transformation between the boreholes, and weakens the pressure relief effect. Therefore, the main factor affecting the pressure relief effect is the hole diameter, and the secondary factor is the hole spacing. The engineering practice employed here showcases how a larger-diameter hole is an effective way of enhancing the effect of pressure relief and controlling the occurrence of rock burst. These research results are of great significance for guiding engineering practice

    Numerical Study on the Pressure Relief Characteristics of a Large-Diameter Borehole

    No full text
    Large-diameter drilling is an effective method for preventing rock burst disasters in coal mines. In this paper, the roadway stability of the W1123 fully mechanized caving work face of the Kuangou coal mine, located in northwest China, is investigated. A set of numerical modelling techniques were carried out to study the characteristics of stress, displacement, strain energy and the plastic zone of the roadway side rock with different parameters, including the large-diameter drilling hole diameter, depth and spacing. The results showed that: (1) after drilling, the peak values of the stress and strain energy are reduced and transferred to a deeper location, and the control effect presents a positive correlation with the diameter of the drilling hole; (2) when Lh < LP, there are no pressure relief and energy release effects, which may induce impact, whereas when LP < Lh ≤ 2.5LP, with the increase of the hole depth, the effects of pressure relief and energy release are enhanced, and further extension is not conducive to the long-term stability of the roadway; and (3) when the hole spacing decreases, the plastic zone and the broken zone between the holes are gradually penetrated, and the stress pattern transforms from a double peak to a saddle shape and then to single peak. Reducing the hole diameter reduces the efficiency of the plastic zone, failure zone and the stress form transformation between the boreholes, and weakens the pressure relief effect. Therefore, the main factor affecting the pressure relief effect is the hole diameter, and the secondary factor is the hole spacing. The engineering practice employed here showcases how a larger-diameter hole is an effective way of enhancing the effect of pressure relief and controlling the occurrence of rock burst. These research results are of great significance for guiding engineering practice

    Application of Exergy Analysis in Flue Gas Condensation Waste Heat Recovery System Evaluation

    No full text
    Flue gas condensation heat recovery technology has a good technical and economic performance in industrial exhaust gas waste heat recovery. Thermal efficiency analysis is the traditional analysis method for the flue gas condensation heat recovery system but it cannot reflect the recovered heat degree. Exergy analysis, which can reflect the recovered energy heat degree, was first applied to the evaluation of a flue gas condensation waste heat recovery system in this paper. The calculation method of wet flue gas exergy is more complex as both a heat and mass transfer is presented. Flue gas waste heat exergy efficiency (EE) and the flue gas waste heat exergy utilization rate (EUR) were proposed as the evaluation indexes for exergy analysis. The exergy analysis method was applied to the comparative evaluation of three recovery schemes in a practical project. The results show that when the water vapor content of wet flue gas is less than 10%, the condensed water exergy can be neglected when calculating EE. The EUR could be used as a comprehensive index for comparing different waste heat recovery schemes, and EE could be used to judge whether the energy grade of heat exchange equipment was seriously decreased. Exergy analysis could effectively make up for the deficiency of thermal efficiency analysis that could not reflect the waste heat grade utilization. Exergy analysis and thermal efficiency analysis are recommended to be used simultaneously to make a more comprehensive analysis and evaluation of the system

    Application of Exergy Analysis in Flue Gas Condensation Waste Heat Recovery System Evaluation

    No full text
    Flue gas condensation heat recovery technology has a good technical and economic performance in industrial exhaust gas waste heat recovery. Thermal efficiency analysis is the traditional analysis method for the flue gas condensation heat recovery system but it cannot reflect the recovered heat degree. Exergy analysis, which can reflect the recovered energy heat degree, was first applied to the evaluation of a flue gas condensation waste heat recovery system in this paper. The calculation method of wet flue gas exergy is more complex as both a heat and mass transfer is presented. Flue gas waste heat exergy efficiency (EE) and the flue gas waste heat exergy utilization rate (EUR) were proposed as the evaluation indexes for exergy analysis. The exergy analysis method was applied to the comparative evaluation of three recovery schemes in a practical project. The results show that when the water vapor content of wet flue gas is less than 10%, the condensed water exergy can be neglected when calculating EE. The EUR could be used as a comprehensive index for comparing different waste heat recovery schemes, and EE could be used to judge whether the energy grade of heat exchange equipment was seriously decreased. Exergy analysis could effectively make up for the deficiency of thermal efficiency analysis that could not reflect the waste heat grade utilization. Exergy analysis and thermal efficiency analysis are recommended to be used simultaneously to make a more comprehensive analysis and evaluation of the system

    Molecular characterization of SPL gene family during flower morphogenesis and regulation in blueberry

    No full text
    Abstract The SPL gene is a plant-specific transcription factor involved in the regulation of plant growth and development, which have been identified in woody plants. The process of floral bud differentiation affects the timing of flowering and fruit set and regulates plant growth, however, the mechanism of regulation of flower development by SPL genes is less studied. In this study, 56 VcSPL genes were identified in the tetraploid blueberry. The VcSPL gene family was classified into six subfamilies, and analysis of cis-elements showed that VcSPL genes were regulated by light, phytohormones (abscisic acid, MeJA), and low temperature. In the evolutionary analysis, segmental replication may play an important role in VcSPL gene amplification. Interestingly, we also studied diploid blueberry (Bilberry), in which 24 SPL genes were identified, and 36 homologous pairs were found, suggesting a high degree of convergence in the syntenic relationship between blueberry (Vaccinium corymbosum L) and bilberry (Vaccinium darrowii). Based on the expression profile, VcSPL genes were expressed at high levels in flowers, shoots, and roots, indicating a diversity of gene functions. Then we selected 20 differentially-expressed SPL genes to further investigate the role of VcSPL in floral induction and initiation. It showed that the genes VcSPL40, VcSPL35, VcSPL45, and VcSPL53 may play a crucial role in the blueberry floral transition phase (from vegetative growth to flower initiation). These results provided important information for understanding and exploring the role of VcSPLs in flower morphogenesis and plant growth.

    Blue Light from Cell Phones Can Cause Chronic Retinal Light Injury: The Evidence from a Clinical Observational Study and a SD Rat Model

    No full text
    Background. To investigate the chronic photodamage induced by the low-intensity blue light of phones, we carried out a clinical pilot study and established an animal model by irradiating SD rats with a homemade illuminator. Methods. Clinical investigation: A total of 25 clinical medical workers in our hospital were selected and divided into a control group and an observation group according to the daily video terminal use time. Multifocal electrophysiological system (Mf-ERG) was used for retinal functional examination. Animal experiment: A total of sixty SD rats were randomly divided into a control group (n=6) and an experimental group (n=54). The experimental rats were divided into nine groups, which were exposed to the blue light illuminator of the simulated cell phone array for different time. The visual electrophysiology of the rats was tested, and changes in structure were observed by H&E staining and transmission electron microscopy. Results. In clinical investigation, macular centers near the concave area retinal photoreceptor cells have reduced amplitude. In animal experiments, the amplitude of photoreceptor cells decreased, the peak time was delayed, and the amplitudes were lower in the experimental groups. H&E staining and transmission electron microscope showed retinal tissue structure and functional damage in experimental groups. Conclusions. Long-term exposure to low-illuminance blue light can cause retinal tissue structure and functional damage, and the chronic damage due to low-illuminance light warrants attention. The clinical registration number is 2018-KY-KS-LHL
    corecore