63 research outputs found

    Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection

    Get PDF
    ZnO nanowires were produced using an electrospinning method and used in gas sensors for the detection of ethanol at 220 °C. This electrospinning technique allows the direct placement of ZnO nanowires during their synthesis to bridge the sensor electrodes. An excellent sensitivity of nearly 90% was obtained at a low ethanol concentration of 10 ppm, and the rest obtained at higher ethanol concentrations, up to 600 ppm, all equal to or greater than 90%

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Self-piercing riveting-a review

    Get PDF
    © The Author(s) 2017. This article is published with open access at Springerlink.com.Self-piercing riveting (SPR) is a cold mechanical joining process used to join two or more sheets of materials by driving a rivet piercing through the top sheet or the top and middle sheets and subsequently lock into the bottom sheet under the guidance of a suitable die. SPR is currently the main joining method for aluminium and mixed-material lightweight automotive structures. SPR was originated half century ago, but it only had significant progress in the last 25 years due to the requirement of joining lightweight materials, such as aluminium alloy structures, aluminium-steel structures and other mixed-material structures, from the automotive industry. Compared with other conventional joining methods, SPR has many advantages including no pre-drilled holes required, no fume, no spark and low noise, no surface treatment required, ability to join multi-layer materials and mixed materials and ability to produce joints with high static and fatigue strengths. In this paper, research investigations that have been conducted on self-piercing riveting will be extensively reviewed. The current state and development of SPR process is reviewed and the influence of the key process parameters on joint quality is discussed. The mechanical properties of SPR joints, the corrosion behaviour of SPR joints, the distortion of SPR joints and the simulation of SPR process and joint performance are reviewed. Developing reliable simulation methods for SPR process and joint performance to reduce the need of physical testing has been identified as one of the main challenges.Peer reviewe

    Pore-Scale Modeling of Microporous Layer for Proton Exchange Membrane Fuel Cell: Effective Transport Properties

    No full text
    A microporous layer (MPL) is a transition layer with a porous material structure, located between the gas diffusion layer (GDL) and catalyst layer (CL) in a proton exchange membrane fuel cell (PEMFC). It not only significantly improves electron transfer and heat conduction in membrane electrode assembly, but also effectively manages liquid water transport to enhance the fuel cell performance. The MPL is usually coated on one side of the GDL. The fragile nature of MPL makes it challenging to characterize the effective transport properties using experimental methods. In this study, a stochastic numerical method is implemented to reconstruct the three-dimensional microstructure of an MPL consisting of carbon particles and PTFE. The reliability of the MPL reconstructed model is validated using experimental data. The relationship between the effective transport properties and the compression strain is obtained using the Pore Scale Model (PSM), while the relationship between the liquid water saturation and capillary pressure is solved by Lattice Boltzmann Method (LBM). The effective transport properties in the MPL are then imported into the two-phase flow fuel cell model. It is found that the effective transport parameters in MPL obtained by PSM and LBM can improve the accuracy of the model calculation. This study provides an effective method to reconstruct the microstructure of MPL that can generate precise MPL transport parameters for utilization in various PEMFC performance prediction models

    MoS2 Membranes for Organic Solvent Nanofiltration: Stability and Structural Control

    No full text
    10.1021/acs.jpclett.9b01780JOURNAL OF PHYSICAL CHEMISTRY LETTERS10164609-461

    Immunogenic Cell Death Enhances Immunotherapy of Diffuse Intrinsic Pontine Glioma: From Preclinical to Clinical Studies

    No full text
    Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric central nervous system. The median survival of children that are diagnosed with DIPG is only 9 to 11 months. More than 200 clinical trials have failed to increase the survival outcomes using conventional cytotoxic or myeloablative chemotherapy. Immunotherapy presents exciting therapeutic opportunities against DIPG that is characterized by unique and heterogeneous features. However, the non-inflammatory DIPG microenvironment greatly limits the role of immunotherapy in DIPG. Encouragingly, the induction of immunogenic cell death, accompanied by the release of damage-associated molecular patterns (DAMPs) shows satisfactory efficacy of immune stimulation and antitumor strategies. This review dwells on the dilemma and advances in immunotherapy for DIPG, and the potential efficacy of immunogenic cell death (ICD) in the immunotherapy of DIPG
    corecore