3,225 research outputs found

    The Additional Line Component within the Iron K\alpha Profile in MCG-6-30-15: Evidence for Blob Ejection?

    Full text link
    The EPIC data of MCG -6-30-15 observed by XMM-Newton were analyzed for the complexities of the iron K-alpha line. Here we report that the additional line component (ALC) at 6.9 keV undoubtedly appears within the broad iron Kalpha; line profile at the high state, whereas it disappears at the low state. These state-dependent behaviors exclude several possible origins and suggest an origin of the ALC in matter being ejected from the vicinity of the black hole. At the low state, the newborn blob ejected from the accretion disk is so Thomson-thick that hard X-rays are blocked from ionizing the old blobs, leading to the disappearance of the ALC. When the blob becomes Thomson-thin as a result of expansion, the hard X-ray will penetrate it and ionize the old ones, emitting the ALC at the high state. The blob ejection is the key to switching the ALC on or off.Comment: 6 pages, 4 Figure

    Light-Front Quantization and AdS/QCD: An Overview

    Full text link
    We give an overview of the light-front holographic approach to strongly coupled QCD, whereby a confining gauge theory, quantized on the light front, is mapped to a higher-dimensional anti de Sitter (AdS) space. The framework is guided by the AdS/CFT correspondence incorporating a gravitational background asymptotic to AdS space which encodes the salient properties of QCD, such as the ultraviolet conformal limit at the AdS boundary at zā†’0z \to 0, as well as modifications of the geometry in the large zz infrared region to describe confinement and linear Regge behavior. There are two equivalent procedures for deriving the AdS/QCD equations of motion: one can start from the Hamiltonian equation of motion in physical space time by studying the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. To a first semiclassical approximation, where quantum loops and quark masses are not included, this leads to a light-front Hamiltonian equation which describes the bound state dynamics of light hadrons in terms of an invariant impact variable Ī¶\zeta which measures the separation of the partons within the hadron at equal light-front time. Alternatively, one can start from the gravity side by studying the propagation of hadronic modes in a fixed effective gravitational background. Both approaches are equivalent in the semiclassical approximation. This allows us to identify the holographic variable zz in AdS space with the impact variable Ī¶\zeta. Light-front holography thus allows a precise mapping of transition amplitudes from AdS to physical space-time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role.Comment: Invited talk presented by GdT at the XIV School of Particles and Fields, Morelia, Mexico, November 8-12, 201

    Status of the QCDSP project

    Full text link
    We describe the completed 8,192-node, 0.4Tflops machine at Columbia as well as the 12,288-node, 0.6Tflops machine assembled at the RIKEN Brookhaven Research Center. Present performance as well as our experience in commissioning these large machines is presented. We outline our on-going physics program and explain how the configuration of the machine is varied to support a wide range of lattice QCD problems, requiring a variety of machine sizes. Finally a brief discussion is given of future prospects for large-scale lattice QCD machines.Comment: LATTICE98(machines), 3 pages, 1 picture, 1 figur

    An exploratory study of autopilot software bugs in unmanned aerial vehicles

    Full text link
    Unmanned aerial vehicles (UAVs) are becoming increasingly important and widely used in modern society. Software bugs in these systems can cause severe issues, such as system crashes, hangs, and undefined behaviors. Some bugs can also be exploited by hackers to launch security attacks, resulting in catastrophic consequences. Therefore, techniques that can help detect and fix software bugs in UAVs are highly desirable. However, although there are many existing studies on bugs in various types of software, the characteristics of UAV software bugs have never been systematically studied. This impedes the development of tools for assuring the dependability of UAVs. To bridge this gap, we conducted the first large-scale empirical study on two well-known open-source autopilot software platforms for UAVs, namely PX4 and Ardupilot, to characterize bugs in UAVs. Through analyzing 569 bugs from these two projects, we observed eight types of UAV-specific bugs (i.e., limit, math, inconsistency, priority, parameter, hardware support, correction, and initialization) and learned their root causes. Based on the bug taxonomy, we summarized common bug patterns and repairing strategies. We further identified five challenges associated with detecting and fixing such UAV-specific bugs. Our study can help researchers and practitioners to better understand the threats to the dependability of UAV systems and facilitate the future development of UAV bug diagnosis tools

    Domain wall fermion zero modes on classical topological backgrounds

    Full text link
    The domain wall approach to lattice fermions employs an additional dimension, in which gauge fields are merely replicated, to separate the chiral components of a Dirac fermion. It is known that in the limit of infinite separation in this new dimension, domain wall fermions have exact zero modes, even for gauge fields which are not smooth. We explore the effects of finite extent in the fifth dimension on the zero modes for both smooth and non-smooth topological configurations and find that a fifth dimension of around ten sites is sufficient to clearly show zero mode effects. This small value for the extent of the fifth dimension indicates the practical utility of this technique for numerical simulations of QCD.Comment: Updated fig. 3-7, small changes in sect. 3, added fig. 8, added more reference

    Top-gated graphene field-effect-transistors formed by decomposition of SiC

    Get PDF
    Top-gated, few-layer graphene field-effect transistors (FETs) fabricated on thermally-decomposed semi-insulating 4H-SiC substrates are demonstrated. Physical vapor deposited SiO2 is used as the gate dielectric. A two-dimensional hexagonal arrangement of carbon atoms with the correct lattice vectors, observed by high-resolution scanning tunneling microscopy, confirms the formation of multiple graphene layers on top of the SiC substrates. The observation of n-type and p-type transition further verifies Dirac Fermions unique transport properties in graphene layers. The measured electron and hole mobility on these fabricated graphene FETs are as high as 5400 cm2/Vs and 4400 cm2/Vs respectively, which are much larger than the corresponding values from conventional SiC or silicon
    • ā€¦
    corecore