49 research outputs found

    Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation

    Get PDF
    Trait-based approaches are key to develop mechanistic understanding of differences in plant species performance under environmental change. While mean trait values have been widely used to link functional traits to species performance, the contribution of intraspecific trait variation and trait plasticity remains unclear. Moreover, environmentally induced changes in species biomass are caused by changes in the number of individuals and individual growth rate, both of which should be influenced by trait differences and plasticity. Our goal in this study is to use trait-based information to explain species performance via changes in species abundance and individual weight. We measured the mean, intraspecific variation and plasticity of nine above-ground plant traits, and a further three mean root traits from 10 common species in a precipitation manipulation experiment in semi-arid grassland. We used this trait information to explain differences in the responses of species biomass, abundance and mean individual weight to changing precipitation. Species responses were calculated as the normalised slopes of the regressions between species biomass, abundance and individual weight with the manipulated precipitation amount. We found strong differences in species responses to changing precipitation for species biomass, abundance and mean individual weight. Reduced precipitation decreased biomass, abundance and mean individual weight for some species, but increased them for others. Biomass and mean individual weight of species with resource-acquisitive traits, such as shallow rooted species, showed stronger positive responses to changing precipitation compared to resource-conservative traits, like those with deep roots. For above-ground traits, trait plasticity was the strongest predictor of species responses compared to mean traits and intraspecific trait variation. In addition, trait plasticity regulated changes in species biomass more via changes in species abundance than mean individual weight. These results indicate that trait plasticity is a key driver for determining species-specific responses to changing precipitation and needs more consideration for understanding and predicting ecosystem structure and functioning in future climate scenarios. A free Plain Language Summary can be found within the Supporting Information of this article

    Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees

    Get PDF
    Data accessibility statement: Full census data are available upon reasonable request from the ForestGEO data portal, http://ctfs.si.edu/datarequest/ We thank Margie Mayfield, three anonymous reviewers and Jacob Weiner for constructive comments on the manuscript. This study was financially supported by the National Key R&D Program of China (2017YFC0506100), the National Natural Science Foundation of China (31622014 and 31570426), and the Fundamental Research Funds for the Central Universities (17lgzd24) to CC. XW was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB3103). DS was supported by the Czech Science Foundation (grant no. 16-26369S). Yves Rosseel provided us valuable suggestions on using the lavaan package conducting SEM analyses. Funding and citation information for each forest plot is available in the Supplementary Information Text 1.Peer reviewedPostprin

    Carbon dynamics of temperate grassland ecosystems in China from 1951 to 2007: an analysis with a process-based biogeochemistry model

    No full text
    Grasslands account for 40 % of the Chinese land area. About 80 % of the total grasslands are in the northern temperate zone. These grassland ecosystems provide goods and services to the local people and play an important role in the global carbon cycle. Remote sensing and ecosystem modeling approaches have been used to quantify the carbon budget of these grasslands. However, the intensive site measurements and meteorological data acquired in these ecosystems in the last few decades have not been adequately used to improve ecosystem model capabilities, in turn, better quantify their carbon budget. In this study an effort was made to examine the carbon budget and its spatial-temporal variation of the temperate grasslands in China from 1951 to 2007 using a process-based biogeochemistry model. It was found that the regional grasslands acted as a small carbon sink at 11.25 g C m(-2) year(-1) in the study area of 64.96 million hectares with a high inter-annual variability ranging from -124 to 122.7 g C m(-2) year(-1) during the study period. As a result, the temperate grasslands sequestered about 410 Tg C in their vegetation and soils during the study period. The carbon sink occurred in typical steppe in central Inner Mongolia within the 300-400 mm rainfall zone and forest steppe in central and western China. By contrast, forest steppe in northeastern China mainly acted as a carbon source. Three major ecosystem types of forest steppe, typical steppe and desert steppe account for 54, 34, and 12 % of the total sink (7.3 Tg C year(-1)) during 1951-2007, respectively. Soil moisture and evapotranspiration had a dominant effect on carbon budget in the typical steppe and the forest steppe while both water conditions and nitrogen mineralization rate were the major factors in the desert steppe. At a decadal scale, the air temperature significantly increased by 0.4 A degrees C and annual precipitation insignificantly decreased by 0.2 mm; the regional carbon sink increased by 2.2 Tg C per decade during the period 1951-2007. However, further sensitivity analysis suggests that the sink of temperate grasslands will be reduced if the climate gets warmer and drier during this century since the increasing net primary production does not keep up with the increase of heterotrophic respiration

    Sensitivity of carbon budget to historical climate variability and atmospheric CO2 concentration in temperate grassland ecosystems in China.

    No full text
    Chinese temperate grasslands play an important role in the terrestrial carbon cycle. Based on the parameterization and validation of Terrestrial Ecosystem Model (TEM, Version 5.0), we analyzed the carbon budgets of Chinese temperate grasslands and their responses to historical atmospheric CO2 concentration and climate variability during 1951-2007. The results indicated that Chinese temperate grassland acted as a slight carbon sink with annual mean value of 7.3 Tg C, ranging from -80.5 to 79.6 Tg C yr(-1). Our sensitivity experiments further revealed that precipitation variability was the primary factor for decreasing carbon storage. CO2 fertilization may increase the carbon storage (1.4 %) but cannot offset the proportion caused by climate variability (-15.3 %). Impacts of CO2 concentration, temperature and precipitation variability on Chinese temperate grassland cannot be simply explained by the sum of the individual effects. Interactions among them increased total carbon storage of 56.6 Tg C which 14.2 Tg C was stored in vegetation and 42.4 Tg C was stored in soil. Besides, different grassland types had different responses to climate change and CO2 concentration. NPP and RH of the desert and forest steppes were more sensitive to precipitation variability than temperature variability while the typical steppe responded to temperature variability more sensitively than the desert and forest steppes

    Identification of Immune Subtypes of Esophageal Adenocarcinoma to Predict Prognosis and Immunotherapy Response

    No full text
    A low response rate limits the application of immune checkpoint inhibitors (ICIs) in the treatment of esophageal adenocarcinoma (EAC), which requires the precise characterization of heterogeneous tumor microenvironments. This study aimed to identify the molecular features and tumor microenvironment compositions of EAC to facilitate patient stratification and provide novel strategies to improve clinical outcomes. Here, we performed consensus molecular subtyping with nonnegative matrix factorization (NMF) using EAC data from the Cancer Genome Atlas (TCGA) and identified two distinct subtypes with significant prognostic differences and differences in tumor microenvironments. The findings were further validated in independent EAC cohorts and potential response to ICI therapy was estimated using Tumor Immune Dysfunction and Exclusion (TIDE) and SubMap methods. Our findings suggest that EAC patients of subtype 2 with low levels of cancer-associated fibroblasts, tumor associated macrophages (TAMs), and MDSCs in the tumor microenvironment may benefit from PD-1 blockade therapy, while patients of subtype 1 are more responsive to chemotherapy or combination therapy. These findings might improve our understanding of immunotherapy efficacy and be useful in the development of new strategies to better guide immunotherapy and targeted therapy in the treatment of EAC

    Wideband RCS reduction of thin metallic edges mediated by spoof surface plasmon polaritons

    No full text
    The back-scattering from front edge diffraction contributes significantly to mono-static radar cross section under TE-polarization when the specular reflection of an object is eliminated by elaborate shaping. With the aim to suppress the back-scattering of thin metallic edge, we propose to achieve wideband radar cross section (RCS) reduction by integrating an absorbing structure (AS) in front of the edge. The unit cell of AS is composed of a longitudinal array of metallic strips with linearly decreasing lengths. Under TE-polarized illumination, spoof surface plasmon polariton (SSPP) can be excited with high efficiency. Due to the deep-subwavelength property of SSPP, electromagnetic waves are highly confined around the AS, leading to strong local field enhancement and hence to wideband absorption. In this way, back-scattering of the edge is suppressed and the mono-static RCS can be reduced significantly over wide band. To verify this method, we designed, fabricated and measured a prototype. The results of both simulation and measurement indicate that our proposal can significantly suppress edge scattering, whose RCS reduction more than 10 dB achieves at range of 8.8–17.8 GHz under TE polarization. This work provides a new alternative of suppressing edge diffraction and may find applications in electromagnetic compatibility, radar stealth, etc

    Local targeted therapy of liver metastasis from colon cancer by galactosylated liposome encapsulated with doxorubicin.

    Get PDF
    Since regional drug administration enables to maintain a high drug concentration within tumors, we compared the plasma concentration and biodistribution of doxorubicin (Dox) from drug-loaded conventional liposomes by local or systemic administration. The results demonstrated that drug concentration was substantially improved in liver as well as a decrease in blood and other organs by spleen injection mimicking portal vein perfusion (regional administration). To further investigate the targeted therapeutic effect of galactosylated liposome encapsulated doxorubicin (Dox) by regional administration, liver targeting liposomes were prepared by incorporating galactosylated-DPPE to conventional liposomes. Liposome uptake and targeting were verified in vitro and in vivo by fluorescence microscopy and xenogen IVIS imaging system, respectively. The results showed that galactose targeted liposomes presented a stronger specific cell uptake by human hepatocellular carcinoma HepG2 cells compared to the non-targeted liposomes. In vivo fluorescence imaging showed that the intra-hepatic deposition of conventional and galactosylated liposomes via spleen injection was more than that via tail vein administration, and galactosylated liposomes had higher fluorescent intensity over conventional liposomes in the liver post spleen administration. The anti-tumor effect of various drug administration routes for both liposomal formulations was evaluated using a murine liver metastasis model of colon cancer. The results indicated that tumor progression in the liver and mesenteric lymph nodes was significantly suppressed by Dox-loaded galactosylated liposomes via spleen injection, while no significance was observed in non-targeted formulations. Our data indicated that local perfusion of galactosylated liposomal doxorubicin had a great promise for the treatment of liver metastasis from colon cancer

    Soil microbial biomass increases along elevational gradients in the tropics and subtropics but not elsewhere

    No full text
    Aim: Our aim is to use elevational gradients to quantify the relationship between temperature and ecosystem functioning. Ecosystem functions such as decomposition, nutrient cycling and carbon storage are linked with the amount of microbial biomass in the soil. Previous studies have shown variable relationships between elevation and soil microbial biomass (SMB). Understanding the biological mechanisms linking SMB with elevational gradients will shed light on the environmental impacts of global warming. Location: Global. Time period: 2002–2018. Major taxa studied: Soil microbes. Method: We performed a global meta-analysis of the relationships between SMB and elevation. Data were collected from 59 studies of 73 elevational transects from around the world. Results: We found no consistent global relationship between SMB and elevation. SMB increased significantly with elevation in the tropics and subtropics, but not in other climate zones. However, we found consistent positive relationships between SMB, soil organic carbon and total nitrogen concentrations. Main conclusions: Our results suggest that global warming will impact tropical and subtropical ecosystems more severely than colder regions. Tropical ecosystems, already at risk from species extinctions, will likely experience declines in SMB as the climate warms, resulting in losses of fundamental ecosystem functions such as nutrient cycling and carbon storage
    corecore