29 research outputs found

    Bioequivalence study of two brands of phenytoin sodium 100mg formulations in healthy adult male rabbits

    Get PDF
    The objective of the study was to compare the bioavailability of a single oral 100 mg dose of two brands of phenytoin sodium formulations available in the Nepalese market. Formulation B was taken as test drug and compared with the innovator brand which was taken as reference standard. A randomized, two-way crossover study was done in six healthy adult male rabbits. All six rabbits received a single oral 100 mg dose of both the formulations with a two-week washout period between the formulations. Blood samples for plasma phenytoin levels were collected at 0.25, 1, 2, 4, 6, 8, 10, 12, 16, 24 hours. The pharmacokinetic parameters of the two brands of phenytoin sodium calculated were area under the concentration versus time curve from time zero to 24 hours (AUC 0-24), Area under the Curve from time zero to infinity (AUC(0-infinity)), peak plasma concentration (C-max) and time of peak concentration (t(max)). Formulation B failed to comply in terms of Area under the Curve (AUC), an important pharmacokinetic parameter to test bioequivalency, which was tested at significance level 0.05. This showed that the test formulation is not bioequivalent with the innovator. Taken together, our preliminary findings suggest that further studies in a large population is needed before switching phenytoin brands once a patient is carefully titrated to a given phenytoin brand

    Autophagy: roles in intestinal mucosal homeostasis and inflammation

    No full text
    Abstract The intestinal mucosa is a site of multiple stressors and forms the barrier between the internal and external environment. In the intestine, a complex interplay between the microbiota, epithelial barrier and the local immune system maintains homeostasis and promotes a healthy gut. One of the major cellular catabolic processes that regulate this homeostasis is autophagy. Autophagy is required to maintain anti-microbial defense, epithelial barrier integrity and mucosal immune response. Dysregulation of the autophagy process causes disruption of several aspects of the intestinal epithelium and the immune system that can lead to an inappropriate immune response and subsequent inflammation. Genome-wide association studies have found an association between several risk loci in autophagy genes and inflammatory bowel disease. The aim of the current review is to provide an update on the role of autophagy in intestinal mucosal physiology and in the control of inappropriate inflammation

    Trichuris muris Model: Role in Understanding Intestinal Immune Response, Inflammation and Host Defense

    No full text
    Several parasites have evolved to survive in the human intestinal tract and over 1 billion people around the world, specifically in developing countries, are infected with enteric helminths. Trichuris trichiura is one of the world’s most common intestinal parasites that causes human parasitic infections. Trichuris muris, as an immunologically well-defined mouse model of T. trichiura, is extensively used to study different aspects of the innate and adaptive components of the immune system. Studies on T. muris model offer insights into understanding host immunity, since this parasite generates two distinct immune responses in resistant and susceptible strains of mouse. Apart from the immune cells, T. muris infection also influences various components of the intestinal tract, especially the gut microbiota, mucus layer, epithelial cells and smooth muscle cells. Here, we reviewed the different immune responses generated by innate and adaptive immune components during acute and chronic T. muris infections. Furthermore, we discussed the importance of studying T. muris model in understanding host–parasite interaction in the context of alteration in the host’s microbiota, intestinal barrier, inflammation, and host defense, and in parasite infection-mediated modulation of other immune and inflammatory diseases

    Saffron pre-treatment promotes reduction in tissue inflammatory profiles and alters Microbiome composition in experimental colitis mice

    No full text
    Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with an incompletely understood pathogenesis. Long-standing colitis is associated with increased risk of colon cancer. Despite the availability of various anti-inflammatory and immunomodulatory drugs, many patients fail to respond to pharmacologic therapy and some experience drug-induced adverse events. Dietary supplements, particularly saffron (Crocus sativus), have recently gained an appreciable attention in alleviating some symptoms of digestive diseases. In our study, we investigated whether saffron may have a prophylactic effect in a murine colitis model. Saffron pre-treatment improved the gross and histopathological characteristics of the colonic mucosa in murine experimental colitis. Treatment with saffron showed a significant amelioration of colitis when compared to the vehicle-treated mice group. Saffron treatment significantly decreased secretion of serotonin and pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, in the colon tissues by suppressing the nuclear translocation of NF-κB. The gut microbiome analysis revealed distinct clusters in the saffron-treated and untreated mice in dextran sulfate sodium (DSS)-induced colitis by visualization of the Bray-Curtis diversity by principal coordinates analysis (PCoA). Furthermore, we observed that, at the operational taxonomic unit (OTU) level, Cyanobacteria were depleted, while short-chain fatty acids (SCFAs), such as isobutyric acid, acetic acid, and propionic acid, were increased in saffron-treated mice. Our data suggest that pre-treatment with saffron inhibits DSS-induced pro-inflammatory cytokine secretion, modulates gut microbiota composition, prevents the depletion of SCFAs, and reduces the susceptibility to colitis

    BJ-1108, a 6-Amino-2,4,5-Trimethylpyridin-3-ol Analog, Inhibits Serotonin-Induced Angiogenesis and Tumor Growth through PI3K/NOX Pathway.

    No full text
    5-Hydroxytryptamine (5-HT) induces proliferation of cancer cells and vascular cells. In addition to 5-HT production by several cancer cells including gastrointestinal and breast cancer, a significant level of 5-HT is released from activated platelets in the thrombotic environment of tumors, suggesting that inhibition of 5-HT signaling may constitute a new target for antiangiogenic anticancer drug discovery. In the current study we clearly demonstrate that 5-HT-induced angiogenesis was mediated through the 5-HT1 receptor-linked Gβγ/Src/PI3K pathway, but not through the MAPK/ERK/p38 pathway. In addition, 5-HT induced production of NADPH oxidase (NOX)-derived reactive oxygen species (ROS). In an effort to develop new molecularly targeted anticancer agents against 5-HT action in tumor growth, we demonstrate that BJ-1108, a derivative of 6-amino-2,4,5-trimethylpyridin-3-ol, significantly inhibited 5-HT-induced angiogenesis. In addition, BJ-1108 induced a significant reduction in the size and weight of excised tumors in breast cancer cell-inoculated CAM assay, showing proportionate suppression of tumor growth along with inhibition of angiogenesis. In human umbilical vein endothelial cells (HUVECs), BJ-1108 significantly suppressed 5-HT-induced ROS generation and phosphorylation of PI3K/Akt but not of Src. Unlike NOX inhibitors, BJ-1108, which showed better antioxidant activity than vitamin C, barely suppressed superoxide anion induced by mevalonate or geranylgeranyl pyrophosphate which directly activates NOX without help from other signaling molecules in HUVECs, implying that the anti-angiogenic action of BJ-1108 was not mediated through direct action on NOX activation, or free radical scavenging activity. In conclusion, BJ-1108 inhibited 5-HT-induced angiogenesis through PI3K/NOX signaling but not through Src, ERK, or p38

    The Anti-Tumor Activity of Succinyl Macrolactin A Is Mediated through the β-Catenin Destruction Complex via the Suppression of Tankyrase and PI3K/Akt

    No full text
    <div><p>Accumulated gene mutations in cancer suggest that multi-targeted suppression of affected signaling networks is a promising strategy for cancer treatment. In the present study, we report that 7-<i>O</i>-succinyl macrolactin A (SMA) suppresses tumor growth by stabilizing the β-catenin destruction complex, which was achieved through inhibition of regulatory components associated with the complex. SMA significantly reduced the activities of PI3K/Akt, which corresponded with a decrease in GSK3β phosphorylation, an increase in β-catenin phosphorylation, and a reduction in nuclear β-catenin content in HT29 human colon cancer cells. At the same time, the activity of tankyrase, which inhibits the β-catenin destruction complex by destabilizing the axin level, was suppressed by SMA. Despite the low potency of SMA against tankyrase activity (IC<sub>50</sub> of 50.1 μM and 15.5 μM for tankyrase 1 and 2, respectively) compared to XAV939 (IC<sub>50</sub> of 11 nM for tankyrase 1), a selective and potent tankyrase inhibitor, SMA had strong inhibitory effects on β-catenin-dependent TCF/LEF1 transcriptional activity (IC<sub>50</sub> of 39.8 nM), which were similar to that of XAV939 (IC<sub>50</sub> of 28.1 nM). In addition to suppressing the colony forming ability of colon cancer cells <i>in vitro</i>, SMA significantly inhibited tumor growth in CT26 syngenic and HT29 xenograft mouse tumor models. Furthermore, treating mice with SMA in combination with 5-FU in a colon cancer xenograft model or with cisplatin in an A549 lung cancer xenograft model resulted in greater anti-tumor activity than did treatment with the drugs alone. In the xenograft tumor tissues, SMA dose-dependently inhibited nuclear β-catenin along with reductions in GSK3β phosphorylation and increases in axin levels. These results suggest that SMA is a possible candidate as an effective anti-cancer agent alone or in combination with cytotoxic chemotherapeutic drugs, such as 5-FU and cisplatin, and that the mode of action for SMA involves stabilization of the β-catenin destruction complex through inhibition of tankyrase and the PI3K/Akt signaling pathway.</p></div
    corecore