24 research outputs found
Curative efficacy of entomopathogenic nematodes against white grubs in honeysuckle fields
Root-feeding white grubs are one of the most serious pests of honeysuckle trees (Lonicera japonica) in China, directly damaging their roots and facilitating infection by soil pathogens. Entomopathogenic nematodes (EPNs) are considered as potential control agents against soil-dwelling insect pests. This study aimed to identify effective EPN species against white grubs through bioassay and field experiments. Among the EPN species screened against Holotrichia oblita under laboratory conditions, Steinernema feltiae and Heterorhabditis indica had low virulence, while S. longicaudum, S. glaseri, and H. bacteriophora applied at a rate of 400 IJs/larva caused a higher corrected mortality (80.00 ± 5.77%), which screened them as good candidates for future applications. The field experiments showed that both S. longicaudum and H. bacteriophora were approximately as effective in reducing white grubs as the insecticide phoxim, whereas S. glaseri caused a significantly lower reduction compared with these two EPNs and phoxim. Plant mortalities obtained from S. longicaudum, H. bacteriophora and the insecticide treatment plots were significantly lower than those observed in the water-treated control plots. All EPNs examined could establish well in the treated honeysuckle fields for 42 d, confirmed by Tenebrio molitar larvae baiting technique. Our findings suggest that EPNs could provide curative efficacy against white grubs and significantly reduce plant death in honeysuckle fields
Development and validation of a three-dimensional deep learning-based system for assessing bowel preparation on colonoscopy video
BackgroundThe performance of existing image-based training models in evaluating bowel preparation on colonoscopy videos was relatively low, and only a few models used external data to prove their generalization. Therefore, this study attempted to develop a more precise and stable AI system for assessing bowel preparation of colonoscopy video.MethodsWe proposed a system named ViENDO to assess the bowel preparation quality, including two CNNs. First, Information-Net was used to identify and filter out colonoscopy video frames unsuitable for Boston bowel preparation scale (BBPS) scoring. Second, BBPS-Net was trained and tested with 5,566 suitable short video clips through three-dimensional (3D) convolutional neural network (CNN) technology to detect BBPS-based insufficient bowel preparation. Then, ViENDO was applied to complete withdrawal colonoscopy videos from multiple centers to predict BBPS segment scores in clinical settings. We also conducted a human-machine contest to compare its performance with endoscopists.ResultsIn video clips, BBPS-Net for determining inadequate bowel preparation generated an area under the curve of up to 0.98 and accuracy of 95.2%. When applied to full-length withdrawal colonoscopy videos, ViENDO assessed bowel cleanliness with an accuracy of 93.8% in the internal test set and 91.7% in the external dataset. The human-machine contest demonstrated that the accuracy of ViENDO was slightly superior compared to most endoscopists, though no statistical significance was found.ConclusionThe 3D-CNN-based AI model showed good performance in evaluating full-length bowel preparation on colonoscopy video. It has the potential as a substitute for endoscopists to provide BBPS-based assessments during daily clinical practice
Downregulation of KIAA1199 alleviated the activation, proliferation, and migration of hepatic stellate cells by the inhibition of epithelial–mesenchymal transition
KIAA1199, a major glycosaminoglycan component of the extracellular matrix, was reported to induce a fibrosis-like process. However, the relationship between KIAA1199 and liver fibrosis remains unclear. The liver fibrosis mouse model was established with carbon tetrachloride (CCl4). Here, we found that KIAA1199 was upregulated in CCl4-induced liver fibrosis. The expression of KIAA1199 was also increased in TGF-β-stimulated LX-2 cells. To clarify the impact of KIAA1199 in hepatic stellate cells (HSCs), we downregulated the expression of KIAA1199 in LX-2 cells by RNA interference. Cell proliferation, apoptosis, and migration were determined by CCK-8, flow cytometry, and transwell assay. We found that KIAA1199 knockdown reduced the expression of fibrosis markers α-SMA and COL1A1. Depletion of KIAA1199 inhibited cell proliferation by downregulating cyclin B1 and cyclin D1 and promoted cell apoptosis by upregulating Bax and downregulating Bcl-2. Moreover, KIAA1199 knockdown decreased matrix metalloproteinase-2 (MMP-2) and MMP-9 expression to inhibit the migration ability of LX-2 cells. Silencing KIAA1199 also suppressed the epithelial–mesenchymal transition phenomenon. Collectively, our study revealed that KIAA1199 knockdown alleviated the activation, proliferation, and migration of HSCs, while promoting apoptosis of HSCs, which suggests that KIAA1199 may be a potential regulator of liver fibrosis
SLC7A2 deficiency promotes hepatocellular carcinoma progression by enhancing recruitment of myeloid-derived suppressors cells
Abstract The main reason for poor prognosis in hepatocellular carcinoma (HCC) patients is high metastasis and recurrence. Cancer progression depends on a tumor-supportive microenvironment. Therefore, illustrating the mechanisms of tumor immunity in underlying HCC metastasis is essential. Here, we report a novel role of solute carrier family 7 member 2 (SLC7A2), a member of the solute carrier family, in HCC metastasis. The reduction of SLC7A2 was an independent and significant risk factor for the survival of HCC patients. Upregulation of SLC7A2 decreased HCC invasion and metastasis, whereas downregulation of SLC7A2 promoted HCC invasion and metastasis. We further found that deficient SLC7A2 medicated the upregulation of CXCL1 through PI3K/Akt/NF-kκB pathway to recruit myeloid-derived suppressor cells (MDSCs), exerting tumor immunosuppressive effect. Moreover, we found that G9a-mediated di-methylation of H3K9 (H3K9me2) silenced the expression of SLC7A2 to suppress HCC metastasis and immune escape. In conclusion, G9a-mediated silencing of SLC7A2 exerts unexpected functions in cancer metastasis by fostering a tumor-supportive microenvironment through CXCL1 secretion and MDSCs recruitment. Thus, SLC7A2 may provide new mechanistic insight into the cancer-promoting property of MDSCs
Effect of Biogas Slurry on the Soil Properties and Microbial Composition in an Annual Ryegrass-Silage Maize Rotation System over a Five-Year Period
Soil health is seriously threatened by the overuse of chemical fertilizers in agricultural management. Biogas slurry is often seen as an organic fertilizer resource that is rich in nutrients, and its use has the goal of lowering the amount of chemical fertilizers used while preserving crop yields and soil health. However, the application of continuous biogas slurry has not yet been studied for its long-term impact on soil nutrients and microbial communities in a rotation system of annual ryegrass-silage maize (Zea mays). This study aimed to investigate the impacts on the chemical properties and microbial community of farmland soils to which chemical fertilizer (NPK) (225 kg ha−1), biogas slurry (150 t ha−1), and a combination (49.5 t ha−1 biogas slurry + 150 kg ha−1 chemical fertilizer) were applied for five years. The results indicated that compared to the control group, the long-term application of biogas slurry significantly increased the SOC, TN, AP, and AK values by 45.93%, 39.52%, 174.73%, and 161.54%, respectively; it neutralized acidic soil and increased the soil pH. TN, SOC, pH, and AP are all important environmental factors that influence the structural composition of the soil’s bacterial and fungal communities. Chemical fertilizer application significantly increased the diversity of the bacterial community. Variation was observed in the composition of soil bacterial and fungal communities among the different treatments. The structure and diversity of soil microbes are affected by different methods of fertilization; the application of biogas slurry not only increases the contents of soil nutrients but also regulates the soil’s bacterial and fungal community structures. Therefore, biogas slurry can serve as a sustainable management measure and offers an alternative to the application of chemical fertilizers for sustainable intensification
Satellite-based analysis of evapotranspiration and water balance in the grassland ecosystems of Dryland East Asia.
The regression tree method is used to upscale evapotranspiration (ET) measurements at eddy-covariance (EC) towers to the grassland ecosystems over the Dryland East Asia (DEA). The regression tree model was driven by satellite and meteorology datasets, and explained 82% and 76% of the variations of ET observations in the calibration and validation datasets, respectively. The annual ET estimates ranged from 222.6 to 269.1 mm yr(-1) over the DEA region with an average of 245.8 mm yr(-1) from 1982 through 2009. Ecosystem ET showed decreased trends over 61% of the DEA region during this period, especially in most regions of Mongolia and eastern Inner Mongolia due to decreased precipitation. The increased ET occurred primarily in the western and southern DEA region. Over the entire study area, water balance (the difference between precipitation and ecosystem ET) decreased substantially during the summer and growing season. Precipitation reduction was an important cause for the severe water deficits. The drying trend occurring in the grassland ecosystems of the DEA region can exert profound impacts on a variety of terrestrial ecosystem processes and functions
Gene Expression Profiling in Human Lung Development: An Abundant Resource for Lung Adenocarcinoma Prognosis
<div><p>A tumor can be viewed as a special “organ” that undergoes aberrant and poorly regulated organogenesis. Progress in cancer prognosis and therapy might be facilitated by re-examining distinctive processes that operate during normal development, to elucidate the intrinsic features of cancer that are significantly obscured by its heterogeneity. The global gene expression signatures of 44 human lung tissues at four development stages from Asian descent and 69 lung adenocarcinoma (ADC) tissue samples from ethnic Chinese patients were profiled using microarrays. All of the genes were classified into 27 distinct groups based on their expression patterns (named as PTN1 to PTN27) during the developmental process. In lung ADC, genes whose expression levels decreased steadily during lung development (genes in PTN1) generally had their expression reactivated, while those with uniformly increasing expression levels (genes in PTN27) had their expression suppressed. The genes in PTN1 contain many n-gene signatures that are of prognostic value for lung ADC. The prognostic relevance of a 12-gene demonstrator for patient survival was characterized in five cohorts of healthy and ADC patients [ADC_CICAMS (n = 69, p = 0.007), ADC_PNAS (n = 125, p = 0.0063), ADC_GSE13213 (n = 117, p = 0.0027), ADC_GSE8894 (n = 62, p = 0.01), and ADC_NCI (n = 282, p = 0.045)] and in four groups of stage I patients [ADC_CICAMS (n = 22, p = 0.017), ADC_PNAS (n = 76, p = 0.018), ADC_GSE13213 (n = 79, p = 0.02), and ADC_qPCR (n = 62, p = 0.006)]. In conclusion, by comparison of gene expression profiles during human lung developmental process and lung ADC progression, we revealed that the genes with a uniformly decreasing expression pattern during lung development are of enormous prognostic value for lung ADC.</p></div
The most significantly enriched functional categories and GO terms of genes in each vPTN with corresponding enrichment score (ES).
<p>The most significantly enriched functional categories and GO terms of genes in each vPTN with corresponding enrichment score (ES).</p
Morphological and transcriptomic features of human lung during development.
<p>(<b>A</b>–<b>C</b>), (<b>D</b>–<b>F</b>), (<b>G</b>–<b>I</b>) & (<b>J</b>–<b>L</b>), Morphological images for the four types of human developmental lung samples, i.e., WholeE, EarlyL, MiddleL & MatureL. (<b>M</b>) Cladogram was created with the whole expression profiles obtained for the developmental lung samples and shows the phylogenetic relationships among the developmental lung samples. (<b>N</b>) Hierarchical clustering analysis of top 4000 most divergent genes. For each gene, we calculated its coefficient of variation (CV) based on its expression values across all developmental samples. The genes were then ranked based on their CV values. The heatmap was generated by hierarchical clustering of the top 4000 genes with largest CV values. The colored matrix indicated the relative expression levels of genes (red for higher expression, green for lower). The distribution of samples from each developmental stage was shown above the heatmap. (<b>O</b>) Developmental samples were projected onto the two-dimensional space captured by PCA with the stages of each sample indicated by color.</p