542 research outputs found
Chaperone-assisted translocation of flexible polymers in three dimensions
Polymer translocation through a nanometer-scale pore assisted by chaperones
binding to the polymer is a process encountered in vivo for proteins. Studying
the relevant models by computer simulations is computationally demanding.
Accordingly, previous studies are either for stiff polymers in three dimensions
or flexible polymers in two dimensions. Here, we study chaperone-assisted
translocation of flexible polymers in three dimensions using Langevin dynamics.
We show that differences in binding mechanisms, more specifically, whether a
chaperone can bind to a single or multiple sites on the polymer, lead to
substantial differences in translocation dynamics in three dimensions. We show
that the single-binding mode leads to dynamics that is very much like that in
the constant-force driven translocation and accordingly mainly determined by
tension propagation on the cis side. We obtain for the
exponent for the scaling of the translocation time with polymer length. This
fairly low value can be explained by the additional friction due to binding
particles. The multiple-site binding leads to translocation whose dynamics is
mainly determined by the trans side. For this process we obtain . This value can be explained by our derivation of for
constant-bias translocation, where translocated polymer segments form a globule
on the trans side. Our results pave the way for understanding and utilizing
chaperone-assisted translocation where variations in microscopic details lead
to rich variations in the emerging dynamics.Comment: 10 pages, 12 figure
Dynamics of polymer ejection from capsid
Polymer ejection from a capsid through a nanoscale pore is an important
biological process with relevance to modern biotechnology. Here, we study
generic capsid ejection using Langevin dynamics. We show that even when the
ejection takes place within the drift-dominated region there is a very high
probability for the ejection process not to be completed. Introducing a small
aligning force at the pore entrance enhances ejection dramatically. Such a pore
asymmetry is a candidate for a mechanism by which a viral ejection is
completed. By detailed high-resolution simulations we show that such capsid
ejection is an out-of-equilibrium process that shares many common features with
the much studied driven polymer translocation through a pore in a wall or a
membrane. We find that the escape times scale with polymer length, . We show that for the pore without the asymmetry the previous
predictions corroborated by Monte Carlo simulations do not hold. For the pore
with the asymmetry the scaling exponent varies with the initial monomer density
(monomers per capsid volume) inside the capsid. For very low densities
the polymer is only weakly confined by the capsid, and we
measure , which is close to obtained for polymer
translocation. At intermediate densities the scaling exponents
and for and , respectively. These scalings are in
accord with a crude derivation for the lower limit . For the
asymmetrical pore precise scaling breaks down, when the density exceeds the
value for complete confinement by the capsid, . The
high-resolution data show that the capsid ejection for both pores, analogously
to polymer translocation, can be characterized as a multiplicative stochastic
process that is dominated by small-scale transitions.Comment: 10 pages, 6 figure
Magnetic excitations in nuclei with neutron excess
The excitation of the , and modes in O, O,
O, O, Ca, Ca, Ca and Ca nuclei is
studied with self-consistent random phase approximation calculations.
Finite-range interactions of Gogny type, containing also tensor-isospin terms,
are used. We analyze the evolution of the magnetic resonances with the
increasing number of neutrons, the relevance of collective effects, the need of
a correct treatment of the continuum and the role of the tensor force.Comment: 18 pages, 12 figures, 2 tables, accepted for publication in Physical
Review
Collectivity-induced quenching of signatures for shell closures
Mass differences are an often used as signature and measure for shell
closure. Using the angular-momentum projected Generator Coordinate Method and
the Skyrme interaction SLy4, we analyze the modification of mass differences
due to static deformation and dynamic fluctuations around the mean-field ground
state.Comment: 7 pages, 4 figure
Overconstrained estimates of neutrinoless double beta decay within the QRPA
Estimates of nuclear matrix elements for neutrinoless double beta decay
(0nu2beta) based on the quasiparticle random phase approximations (QRPA) are
affected by theoretical uncertainties, which can be substantially reduced by
fixing the unknown strength parameter g_pp of the residual particle-particle
interaction through one experimental constraint - most notably through the
two-neutrino double beta decay (2nu2beta) lifetime. However, it has been noted
that the g_pp adjustment via 2\nu2\beta data may bring QRPA models in
disagreement with independent data on electron capture (EC) and single beta
decay (beta^-) lifetimes. Actually, in two nuclei of interest for 0nu2beta
decay (Mo-100 and Cd-116), for which all such data are available, we show that
the disagreement vanishes, provided that the axial vector coupling g_A is
treated as a free parameter, with allowance for g_A<1 (``strong quenching'').
Three independent lifetime data (2nu2beta, EC, \beta^-) are then accurately
reproduced by means of two free parameters (g_pp, g_A), resulting in an
overconstrained parameter space. In addition, the sign of the 2nu2beta matrix
element M^2nu is unambiguously selected (M^2nu>0) by the combination of all
data. We discuss quantitatively, in each of the two nuclei, these
phenomenological constraints and their consequences for QRPA estimates of the
0nu2beta matrix elements and of their uncertainties.Comment: Revised version (27 pages, including 10 figures), focussed on Mo-100
and Cd-116. To appear in J. Phys. G: Nucl. Phys. (2008
Search for 2\beta\ decays of 96Ru and 104Ru by ultra-low background HPGe gamma spectrometry at LNGS: final results
An experiment to search for double beta decay processes in 96Ru and 104Ru,
which are accompanied by gamma rays, has been realized in the underground Gran
Sasso National Laboratories of the I.N.F.N. (Italy). Ruthenium samples with
masses of about (0.5-0.7) kg were measured with the help of ultra-low
background high purity Ge gamma ray spectrometry. After 2162 h of data taking
the samples were deeply purified to reduce the internal contamination of 40K.
The last part of the data has been accumulated over 5479 h. New improved half
life limits on 2\beta+/\epsilon \beta+/2\epsilon\ processes in 96Ru have been
established on the level of 10^{20} yr, in particular for decays to the ground
state of 96Mo: T1/2(2\nu 2\beta+) > 1.4 10^{20} yr, T1/2(2\nu \epsilon\beta+) >
8.0 10^{19} yr and T1/2(0\nu 2K) > 1.0 10^{21} yr (all limits are at 90% C.L.).
The resonant neutrinoless double electron captures to the 2700.2 keV and 2712.7
keV excited states of 96Mo are restricted as: T1/2(0\nu KL) > 2.0 10^{20} yr
and T1/2(0\nu 2L) > 3.6 10^{20} yr, respectively. Various two neutrino and
neutrinoless 2\beta\ half lives of 96Ru have been estimated in the framework of
the QRPA approach. In addition, the T1/2 limit for 0\nu 2\beta- transitions of
104Ru to the first excited state of 104Pd has been set as > 6.5 10^{20} yr.Comment: 14 pages, 5 figures, 2 tables; version accepted for publication on
Phys. Rev.
Extension of random-phase approximation preserving energy weighted sum rules: an application to a 3-level Lipkin model
A limitation common to all extensions of random-phase approximation including
only particle-hole configurations is that they violate to some extent the
energy weighted sum rules. Considering one such extension, the improved RPA
(IRPA), already used to study the electronic properties of metallic clusters,
we show how it can be generalized in order to eliminate this drawback. This is
achieved by enlarging the configuration space, including also elementary
excitations corresponding to the annihilation of a particle (hole) and the
creation of another particle (hole) on the correlated ground state. The
approach is tested within a solvable 3-level model.Comment: 2 figure
- …