7 research outputs found

    A pluri- és multipotencia határán: a ganglionléc őssejtjei

    Get PDF
    Absztrakt A ganglionléc a gerinces embriókban megjelenő átmeneti, multipotens, vándorló sejtpopuláció, amiből a perifériás idegrendszer idegi és gliális elemeitől kezdve a craniofacialis terület ectomesenchymalis származékain vagy a bőr pigmentsejtjein át számos struktúra származtatható. Érdekes módon a ganglionléc-eredetű őssejtek nem csak az embrionális ganglionlécben vannak jelen, hanem megtalálhatók az általuk betelepített embrionális és felnőttkori szövetekben is. Ezek a posztmigrációs őssejtek – legalábbis részlegesen – tükrözik elődeik multipotenciáját. Ráadásul az olyan ganglionléc-eredetű, terminálisan differenciálódott sejtek, mint például a Schwann-sejtek és a melanocyták, bármikor képesek őssejtszerű progenitorokká dedifferenciálódni. Az összefoglaló tanulmányban a szerzők bemutatják, hogy mit tudunk jelenleg ezekről a különleges plaszticitású őssejtekről és milyen potenciális alkalmazási lehetőségek merülnek fel velük kapcsolatban a regeneratív orvoslás területén. Orv. Hetil., 2015, 156(42), 1683–1694

    Quo vadis, hematológia?

    Get PDF
    For decades, developing hematopoietic cells have been strictly compartmentalized into a small population of multipotent self-renewing hematopoietic stem cells, multipotent hematopoietic progenitor cells that are undergoing commitment to myeloid or lymphoid fates, and unipotent precursor cells that mature towards peripheral blood and immune cells. Recent studies, however, have provided a battery of findings that cannot be explained by this "classical" hierarchical model for the architecture of hematopoiesis. It is emerging that heterogeneous hematopoietic stem cell populations in the bone marrow coexist, each with distinct, preprogrammed differentiation and proliferation behaviors. Three subsets can be distinguished among them: myeloid-biased (alpha), balanced (beta), and lymphoid-biased (gamma/delta) hematopoietic stem cells. The ratio of these hematopoietic stem cell subsets is developmentally regulated in the foetal liver and hematopoietic stem cells adult bone marrow, and coordinately gives rise to hematopoiesis. Beta- and gamma/delta-hematopoietic stem cells are found predominantly early in the life of an organism, whereas alpha-hematopoietic stem cells accumulate in aged mice and humans. In addition, new sophisticated genetic experiments in mice have identified a major role of long-lived, committed progenitor cells downstream from hematopoietic stem cells as drivers of normal adult hematopoiesis, and revealed that post-transplantation hematopoiesis differs qualitatively and quantitatively from normal steady-state hematopoiesis. These findings have important implications for understanding in situ the regulation of haematopoiesis in health and disease. Orv. Hetil., 2016, 157(46), 1819-1829

    Tapasztalatok es motiváltság: magyar középiskolások véleménye az egészségvédő programokról.

    Get PDF
    INTRODUCTION: Health-related attitudes can be encouraged most effectively at young ages. Young generations would require more interactive methods in programs engaged in health promotion. AIM: The aim of the authors was to get an insight into the attitudes, experience and motivation of youngsters in connection with health promotion programs and the community service work. METHOD: The questionnaires were filled in by high school students studying in Budapest and in the countryside (N = 898). RESULTS: 44.4% of the students did not have lessons or extracurricular activities dealing with health promotion. Concerning health promotion programs, youngsters in Budapest had more positive experience, while female students showed a more adoptive attitude. CONCLUSIONS: It was concluded that in one of the most susceptible life stages, many youngsters either do not participate in programs dealing with health promotion, or participate in programs that are within the framework of school subjects or extracurricular activities building on traditional teaching methods. Orv. Hetil., 2016, 157(2), 65-69

    A genetikán is túl - Az epigenetika előretörése és orvosi vonatkozásai [Beyond genetics - The emerging role of epigenetics and its clinical aspects].

    Get PDF
    Analysis of genomic sequences has clearly shown that the genomic differences among species do not explain the diversity of life. The genetic code itself serves as only a part of the dynamic complexity that results in the temporal and spatial changes in cell phenotypes during development. It has been concluded that the phenotype of a cell and of the organism as a whole is more influenced by environmentally-induced changes in gene activity than had been previously thought. The emerging field of epigenetics focuses on molecular marks on chromatin; called the epigenome, which serve as transmitters between the genome and the environment. These changes not only persist through multiple cell division cycles, but may also endure for multiple generations. Irregular alterations of the epigenome; called epimutations, may have a decisive role in the etiology of human pathologies such as malignancies and other complex human diseases. Epigenetics can provide the missing link between genetics, disease and the environment. Therefore, this field may have an increasing impact on future drug design and serve as a basis for new therapeutic/preventative approaches. Orv. Hetil., 2012, 153, 214-221

    Galectin-1 is a local but not systemic immunomodulatory factor in mesenchymal stromal cells.

    No full text
    BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) have powerful immunosuppressive activity. This function of MSCs is attributed to plethora of the expressed immunosuppressive factors, such as galectin-1 (Gal-1), a pleiotropic lectin with robust anti-inflammatory effect. Nevertheless, whether Gal-1 renders or contributes to the immunosuppressive effect of MSCs has not been clearly established. Therefore, this question was the focus of a complex study. METHODS: MSCs were isolated from bone marrows of wild-type and Gal-1 knockout mice and their in vitro anti-proliferative and apoptosis-inducing effects on activated T cells were examined. The in vivo immunosuppressive activity was tested in murine models of type I diabetes and delayed-type hypersensitivity. RESULTS: Both Gal-1-expressing and -deficient MSCs inhibited T-cell proliferation. Inhibition of T-cell proliferation by MSCs was mediated by nitric oxide but not PD-L1 or Gal-1. In contrast, MSC-derived Gal-1 triggered apoptosis in activated T cells that were directly coupled to MSCs, representing a low proportion of the T-cell population. Furthermore, absence of Gal-1 in MSCs did not affect their in vivo immunosuppressive effect. CONCLUSIONS: These results serve as evidence that Gal-1 does not play a role in the systemic immunosuppressive effect of MSCs. However, a local contribution of Gal-1 to modulation of T-cell response by direct cell-to-cell interaction cannot be excluded. Notably, this study serves a good model to understand how the specificity of a pleiotropic protein depends on the type and localization of the producing effector cell and its target
    corecore