4,798 research outputs found

    A quasi-time-dependent radiative transfer model of OH104.9+2.4

    Full text link
    We investigate the pulsation-phase dependent properties of the circumstellar dust shell (CDS) of the OH/IR star OH104.9+2.4 based on radiative transfer modeling (RTM) using the code DUSTY. Our previous study concerning simultaneous modeling of the spectral energy distribution (SED) and near-infrared (NIR) visibilities (Riechers et al. 2004) has now been extended by means of a more detailed analysis of the pulsation-phase dependence of the model parameters of OH104.9+2.4. In order to investigate the temporal variation in the spatial structure of the CDS, additional NIR speckle interferometric observations in the K' band were carried out with the 6 m telescope of the Special Astrophysical Observatory (SAO). At a wavelength of 2.12 micron the diffraction-limited resolution of 74 mas was attained. Several key parameters of our previous best-fitting model had to be adjusted in order to be consistent with the newly extended amount of observational data. It was found that a simple rescaling of the bolometric flux F_bol is not sufficient to take the variability of the source into account, as the change in optical depth over a full pulsation cycle is rather high. On the other hand, the impact of a change in effective temperature T_eff on SED and visibility is rather small. However, observations, as well as models for other AGB stars, show the necessity of including a variation of T_eff with pulsation phase in the radiative transfer models. Therefore, our new best-fitting model accounts for these changes.Comment: 7 pages, including 5 postscript figures and 3 tables. Published in Astronomy and Astrophysics. (v1: accepted version; v2: published version, minor grammatical changes

    The Effect of Music on Robot-Assisted Laparoscopic Surgical Performance

    Get PDF
    Music is often played in the operating room to increase the surgeon’s concentration and to mask noise. It could have a beneficial effect on surgical performance. Ten participants with limited experience with the da Vinci robotic surgical system were recruited to perform two surgical tasks: suture tying and mesh alignment when classical, jazz, hip-hop, and Jamaican music were presented. Kinematics of the instrument tips of the surgical robot and surface electromyography of the subjects were recorded. Results revealed that a significant music effect was found for both tasks with decreased time to task completion (P = .005) and total travel distance (P = .021) as well as reduced muscle activations ( P = .016) and increased median muscle frequency (P = .034). Subjects improved their performance significantly when they listened to either hip-hop or Jamaican music. In conclusion, music with high rhythmicity has a beneficial effect on robotic surgical performance. Musical environment may benefit surgical training and make acquisition of surgical skills more efficient

    The impact of environmental noise on robot-assisted laparoscopic surgical performance

    Get PDF
    Background. An operating room is a noisy environment. How noise affects performance during robotic surgery remains unknown. We investigated whether noise during training with the da Vinci surgical robot (Intuitive Surgical, Inc., Sunnyvale, CA) would affect the performance of simple operative tasks by the surgeon. Methods. Twelve medical students performed 3 inanimate operative tasks (bimanual carrying, suture tying, and mesh alignment) on the da Vinci Surgical System with or without the presence of noise. Prerecorded noise from an actual operating room was used. The kinematics of the robotic surgical instrument tips and the muscle activation patterns of the subjects were evaluated. Results. We found noise effects for all 3 tasks with increases in the time to task completion (23%; P = .046), the total distance traveled (8%; P = .011) of the surgical instrument tips, and the muscle activation volume (87%; P = .015) with the presence of noise. We confirmed that the mesh alignment task was the most difficult task with the greatest time to task completion and the greatest muscle activation volume, whereas the suture tying task and the bimanual carrying could be considered the intermediate and the least difficult task, respectively. The noise effects were significantly greater while performing more difficult tasks. Conclusion. Our findings demonstrated that noise degraded robotic surgical performance; however, the impact of noise on robotic surgery will depend on the level of difficulty of the task. Subsequent research is required to identify how different types of noise, such as random or rhythmic sounds, affect the performance of operative tasks using robots such as the da Vinci

    Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain

    Get PDF
    AbstractHuman noroviruses (NoV) are the leading cause of acute viral gastroenteritis worldwide. Significant antigenic diversity of NoV strains has limited the availability of broadly reactive ligands for design of detection assays. The purpose of this work was to produce and characterize single stranded (ss)DNA aptamers with binding specificity to human NoV using an easily produced NoV target—the P domain protein. Aptamer selection was done using SELEX (Systematic Evolution of Ligands by EXponential enrichment) directed against an Escherichia coli-expressed and purified epidemic NoV GII.4 strain P domain. Two of six unique aptamers (designated M1 and M6-2) were chosen for characterization. Inclusivity testing using an enzyme-linked aptamer sorbent assay (ELASA) against a panel of 14 virus-like particles (VLPs) showed these aptamers had broad reactivity and exhibited strong binding to GI.7, GII.2, two GII.4 strains, and GII.7 VLPs. Aptamer M6-2 exhibited at least low to moderate binding to all VLPs tested. Aptamers significantly (p<0.05) bound virus in partially purified GII.4 New Orleans outbreak stool specimens as demonstrated by ELASA and aptamer magnetic capture (AMC) followed by RT-qPCR. This is the first demonstration of human NoV P domain protein as a functional target for the selection of nucleic acid aptamers that specifically bind and broadly recognize diverse human NoV strains

    Spin Dynamics in the LTT Phase of ~1/8 Doped Single Crystal La_{1.67}Eu_{0.2}Sr_{0.13}CuO_4

    Full text link
    We present La and Cu NMR relaxation measurements in single crystal La_{1.67}Eu_{0.2}Sr_{0.13}CuO_4. A strong peak in the La spin-lattice relaxation rate observed in the spin ordered state is well-described by the BPP mechanism[1] and arises from continuous slowing of electronic spin fluctuations with decreasing temperature; these spin fluctuations exhibit XY-like anisotropy in the ordered state. The spin pseudogap is enhanced by the static charge-stripe order in the LTT phase.Comment: Four pages, three figure

    \u3ci\u3eMedicine Meets Virtual Reality 17\u3c/i\u3e

    Get PDF
    Chapter, A Virtual Reality Training Program for Improvement of Robotic Surgical Skills, co-authored by Mukul Mukherjee and Nicholas Stergiou, UNO faculty members. Chapter, Consistency of Performance of Robot-Assisted Surgical Tasks in Virtual Reality, co-authored by Mukul Mukherjee and Nicholas Stergiou, UNO faculty members. The 17th annual Medicine Meets Virtual Reality (MMVR17) was held January 19-22, 2009, in Long Beach, CA, USA. The conference is well established as a forum for emerging data-centered technologies for medical care and education. Each year, it brings together an international community of computer scientists and engineers, physicians and surgeons, medical educators and students, military medicine specialists and biomedical futurists. MMVR emphasizes inter-disciplinary collaboration in the development of more efficient and effective physician training and patient care. The MMVR17 proceedings collect 108 papers by conference lecture and poster presenters. These papers cover recent developments in biomedical simulation and modeling, visualization and data fusion, haptics, robotics, sensors and other related information-based technologies. Key applications include medical education and surgical training, clinical diagnosis and therapy, physical rehabilitation, psychological assessment, telemedicine and more. From initial vision and prototypes, through assessment and validation, to clinical and academic utilization and commercialization - MMVR explores the state-of-the-art and looks toward healthcare’s future. The proceedings volume will interest physicians, surgeons and other medical professionals interested in emerging and future tools for diagnosis and therapy; educators responsible for training the next generation of doctors and scientists; IT and medical device engineers creating state-of-the-art and next-generation simulation, imaging, robotics and communication systems; data technologists creating systems for gathering, processing and distributing medical intelligence; military medicine specialists addressing the challenges of warfare and defense health needs; and biomedical futurists and investors who want to understand where the field is headed.https://digitalcommons.unomaha.edu/facultybooks/1233/thumbnail.jp

    Enhancing Fundamental Robot-Assisted Surgical Proficiency by Using a Portable Virtual Simulator

    Get PDF
    Background. The development of a virtual reality (VR) training platform provides an affordable interface. The learning effect of VR and the capability of skill transfer from the VR environment to clinical tasks require more investigation. Methods. Here, 14 medical students performed 2 fundamental surgical tasks—bimanual carrying (BC) and peg transfer (PT)—in actual and virtual environments. Participants in the VR group received VR training, whereas participants in the control group played a 3D game. The learning effect was examined by comparing kinematics between pretraining and posttraining in the da Vinci Surgical System. Differences between VR and playing the 3D game were also examined. Results. Those who were trained with the VR simulator had significantly better performance in both actual PT (P = .002) and BC (P \u3c .001) tasks. The time to task completion and the total distance traveled were significantly decreased in both surgical tasks in the VR group compared with the 3D game group. However, playing the 3D game showed no significant enhancement of fundamental surgical skills in the actual PT task. The difference between pretraining and posttraining was significantly larger in the VR group than in the 3D game group in both the time to task completion (P = .002) and the total distance traveled (P = .027) for the actual PT task. Participants who played the 3D game seemed to perform even worse in posttraining. Conclusions. Training with the portable VR simulator improved robot-assisted surgical skill proficiency in comparison to playing a 3D game

    Skills Learning in Robot-Assisted Surgery Is Benefited by Task-Specific Augmented Feedback

    Get PDF
    Background: Providing augmented visual feedback is one way to enhance robot-assisted surgery (RAS) training. However, it is unclear whether task specificity should be considered when applying augmented visual feedback. Methods: Twenty-two novice users of the da Vinci Surgical System underwent testing and training in 3 tasks: simple task, bimanual carrying (BC); intermediate task, needle passing (NP); and complex task, suture tying (ST). Pretraining (PRE), training, and posttraining (POST) trials were performed during the first session. Retention trials were performed 2 weeks later (RET). Participants were randomly assigned to 1 of 4 feedback training groups: relative phase (RP), speed, grip force, and video feedback groups. Performance measures were time to task completion (TTC), total distance traveled (D), speed (S), curvature, relative phase, and grip force (F). Results: Significant interaction for TTC and curvature showed that the RP feedback training improved temporal measures of complex ST task compared to simple BC task. Speed feedback training significantly improved the performance in simple BC task in terms of TTC, D, S, curvature, and F even after retention. There was also a lesser long-term effect of speed feedback training on complex ST task. Grip force feedback training resulted in significantly greater improvements in TTC and curvature for complex ST task. For the video feedback training group, the improvements in most of the outcome measures were evident only after RET. Conclusions: Task-specific augmented feedback is beneficial to RAS skills learning. Particularly, the RP and grip force feedback could be useful for training complex tasks
    • …
    corecore