54 research outputs found

    Myeloid Differentiation Factor 88 (MyD88)-Deficiency Increases Risk of Diabetes in Mice

    Get PDF
    BACKGROUND: Multiple lines of evidence suggest innate immune response pathways to be involved in the development of obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR) 4, which is thought to mediate obesity-associated insulin resistance. Myeloid differentiation factor 88 (MyD88) is an adapter protein for TLR/IL-1 receptor signaling, which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD)-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we found MyD88-deficient mice fed a HFD had increased circulating levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of JNK and cleavage of PARP), which were linked to the onset of severe diabetes. On the other hand, TNF-alpha would not be involved in HFD-induced diabetes in MyD88-deficient mice, because TNF-alpha level was attenuated in MyD88-deficient mice fed with HFD. CONCLUSIONS/SIGNIFICANCE: The present finding of an unexpected role for MyD88 in preventing diabetes may provide a potential novel target/strategy for treating metabolic syndrome

    Thermophysical Properties Measurement of High-Temperature Liquids Under Microgravity Conditions in Controlled Atmospheric Conditions

    Get PDF
    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are preparing the experiments of thermophysical properties measurements using the Materials-Science Laboratories ElectroMagnetic-Levitator (MSL-EML) facilities in the international Space station (ISS). Recently, it has been identified that dependence of surface tension on oxygen partial pressure (Po2) must be considered for industrial application of surface tension values. Effect of Po2 on surface tension would apparently change viscosity from the damping oscillation model. Therefore, surface tension and viscosity must be measured simultaneously in the same atmospheric conditions. Moreover, effect of the electromagnetic force (EMF) on the surface oscillations must be clarified to obtain the ideal surface oscillation because the EMF works as the external force on the oscillating liquid droplets, so extensive EMF makes apparently the viscosity values large. In our group, using the parabolic flight levitation experimental facilities (PFLEX) the effect of Po2 and external EMF on surface oscillation of levitated liquid droplets was systematically investigated for the precise measurements of surface tension and viscosity of high temperature liquids for future ISS experiments. We performed the observation of surface oscillations of levitated liquid alloys using PFLEX on board flight experiments by Gulfstream II (G-II) airplane operated by DAS. These observations were performed under the controlled Po2 and also under the suitable EMF conditions. In these experiments, we obtained the density, the viscosity and the surface tension values of liquid Cu. From these results, we discuss about as same as reported data, and also obtained the difference of surface oscillations with the change of the EMF conditions

    Surrogate models for the magnitude of convection in droplets levitated through EML, ADL, and ESL methods

    Full text link
    Fluid flow and heat transfer in levitated droplets were numerically investigated. Three levitation methods: electro-magnetic levitation (EML), aerodynamic levitation (ADL), and electro-static levitation (ESL) were considered, and conservative laws of mass, momentum, and energy were applied as common models. The Marangoni effect was applied as a velocity boundary condition, whereas heat transfer and radiation heat loss were considered as thermal boundary conditions. As specific models to EML, the Lorentz force, and Joule heat were calculated based on the analytical solution of the electromagnetic field. For the ADL model, besides the Marangoni effect, the flow driven by the surface shear force was considered. For ADL and ESL models, the effect of laser heating was introduced as a boundary condition. All the equations were nondimensionalized using common scales for all three levitations. Numerical simulations were performed for several materials and droplet sizes, and the results were evaluated in terms of the Reynolds number based on the maximum velocity of the flow in the droplet. The order of magnitude of Reynolds numbers was evaluated as Re104\text{Re} \sim 10^4 for EML, Re103\text{Re} \sim 10^3 for ADL, and Re101\text{Re} \sim 10^1 for ESL. Based on the simulation results, we proposed simple formulas for predicting the Reynolds number of droplet internal convection using combinations of nondimensional numbers determined from the physical properties of the material and the driving conditions. The proposed formulas can be used as surrogate models to predict the Reynolds numbers, even for materials other than those used in this study

    Literature survey on epidemiology and pathology of cardiac fibroma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although cardiac fibroma has been regarded as benign tumor, it presents various symptoms and may lead to death. Unfortunately, only a few studies have reported the epidemiology, embryology, and histopathology of the tumor, and the factors predicting poorer outcome are still obscured.</p> <p>Methods</p> <p>In July 2011 we searched for English and Japanese cases of cardiac fibroma using the PubMed and IgakuChuoZasshi databases. We then extracted and sampled raw data from the selected publications in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) style as much as was possible.</p> <p>Results</p> <p>Details of a total of 178 patients with cardiac fibroma were retrieved. The mean age was 11.4 years (median: 2.8 years). Tumor sizes ranged from 8.0 to 150.0 mm (mean 53.1 mm). The left ventricle was found to be the most common site associated with the tumor at a rate of 57.3%, followed by the right ventricle, and interventricular septum. The highest mortality was found in patients with septal involvement (58.6%). In all, 111 patients survived among the 160 patients with a recorded outcome. A younger age of the patient at the time of diagnosis was associated with a decreased survival rate. In addition, a significant positive association was found between ages for patients younger than 17 years of age and the diameter of the tumor at the time of diagnosis (r = 0.341, <it>P </it>= 0.006).</p> <p>Conclusions</p> <p>Both the younger age of patients at the time of diagnosis and septal involvement can be regarded as factors significantly indicating a poor prognosis. Furthermore, our statistical analyses support the following hypotheses. First, the high ratio of tumor-to-heart size may generate low cardiac output and therefore lead to poor outcome. Second, the ratio of the sites where cardiac fibroma occurred corresponds with the ratio of the muscular weight of the cardiac chamber. Third, cardiac fibroma involving the interventricular septum more frequently induces conduction system disease.</p

    Preparation of TiO<sub>2</sub> Pillared Mica for Forming Composite Sheet with Photocatalytic Properties

    No full text
    corecore