7,786 research outputs found

    The early reionization with the primordial magnetic fields

    Full text link
    The early reionization of the intergalactic medium, which is favored from the WMAP temperature-polarization cross-correlations, contests the validity of the standard scenario of structure formation in the cold dark matter cosmogony. It is difficult to achieve early enough star formation without rather extreme assumptions such as very high escape fraction of ionizing photons from proto-galaxies or a top-heavy initial mass function. Here we propose an alternative scenario that is additional fluctuations on small scales induced by primordial magnetic fields trigger the early structure formation. We found that ionizing photons from Population III stars formed in dark haloes can easily reionize the universe by z15z \simeq 15 if the strength of primordial magnetic fields is larger than 0.6×1090.6 \times 10^{-9}Gauss.Comment: 8 pages, 5 figures. accepted for publication in MNRA

    Understanding redshift space distortions in density-weighted peculiar velocity

    Full text link
    Observations of the kinetic Sunyaev-Zel'dovich (kSZ) effect measure the density-weighted velocity field, a potentially powerful cosmological probe. This paper presents an analytical method to predict the power spectrum and two-point correlation function of the density-weighted velocity in redshift space, the direct observables in kSZ surveys. We show a simple relation between the density power spectrum and the density-weighted velocity power spectrum that holds for both dark matter and halos. Using this relation, we can then extend familiar perturbation expansion techniques to the kSZ power spectrum. One of the most important features of density-weighted velocity statistics in redshift space is the change in sign of the cross-correlation between the density and density-weighted velocity at mildly small scales due to nonlinear redshift space distortions. Our model can explain this characteristic feature without any free parameters. As a result, our results can precisely predict the non-linear behavior of the density-weighted velocity field in redshift space up to 30 h1Mpc\sim30\ h^{-1} {\rm Mpc} for dark matter particles at the redshifts of z=0.0z=0.0, 0.50.5, and 1.01.0.Comment: 21 pages, 11 figure

    Production of doubly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model

    Full text link
    The existence of doubly charged Higgs bosons (H^{\pm\pm}) is a distinctive feature of the Higgs Triplet Model (HTM), in which neutrinos obtain tree-level masses from the vacuum expectation value of a neutral scalar in a triplet representation of SU(2)_L. We point out that a large branching ratio for the decay of a singly charged Higgs boson to a doubly charged Higgs boson via H^\pm\to H^{\pm\pm}W^* is possible in a sizeable parameter space of the HTM. From the production mechanism q'qbar\to W^* \to H^{\pm\pm}H^\mp the above decay mode would give rise to pair production of H^{\pm\pm}, with a cross section which can be comparable to that of the standard pair-production mechanism qqbar\to \gamma^*,Z^* \to H^{++}H^{--}. We suggest that the presence of a sizeable branching ratio for H^\pm\to H^{\pm\pm}W^* could significantly enhance the detection prospects of H^{\pm\pm} in the four-lepton channel. Moreover, the decays H^0\to H^\pm W^* and A^0\to H^\pm W^* from production of the neutral triplet scalars H^0 and A^0 would also provide an additional source of H^\pm, which can subsequently decay to H^{\pm\pm}.Comment: 13 pages, 3 figures, two figures added in v2, to appear in Physical Review

    A direct measure of free electron gas via the Kinematic Sunyaev-Zel'dovich effect in Fourier-space analysis

    Full text link
    We present the measurement of the kinematic Sunyaev-Zel'dovich (kSZ) effect in Fourier space, rather than in real space. We measure the density-weighted pairwise kSZ power spectrum, the first use of this promising approach, by cross-correlating a cleaned Cosmic Microwave Background (CMB) temperature map, which jointly uses both Planck Release 2 and Wilkinson Microwave Anisotropy Probe nine-year data, with the two galaxy samples, CMASS and LOWZ, derived fr om the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12. With the current data, we constrain the average optical depth τ\tau multiplied by the ratio of the Hubble parameter at redshift zz and the present day, E=H/H0E=H/H_0; we find τE=(3.95±1.62)×105\tau E = (3.95\pm1.62)\times10^{-5} for LOWZ and τE=(1.25±1.06)×105\tau E = ( 1.25\pm 1.06)\times10^{-5} for CMASS, with the optimal angular radius of an aperture photometry filter to estimate the CMB temperature distortion associ ated with each galaxy. By repeating the pairwise kSZ power analysis for various aperture radii, we measure the optical depth as a function of aperture ra dii. While this analysis results in the kSZ signals with only evidence for a detection, S/N=2.54{\rm S/N}=2.54 for LOWZ and 1.241.24 for CMASS, the combination of future CMB and spectroscopic galaxy surveys should enable precision measurements. We estimate that the combination of CMB-S4 and data from DESI shoul d yield detections of the kSZ signal with S/N=70100{\rm S/N}=70-100, depending on the resolution of CMB-S4.Comment: 24 pages, 15 figure

    Patchy He II reionization and the physical state of the IGM

    Full text link
    We present a Monte-Carlo model of He II reionization by QSOs and its effect on the thermal state of the clumpy intergalactic medium (IGM). The model assumes that patchy reionization develops as a result of the discrete distribution of QSOs. It includes various recipes for the propagation of the ionizing photons, and treats photo-heating self-consistently. The model provides the fraction of He III, the mean temperature in the IGM, and the He II mean optical depth -- all as a function of redshift. It also predicts the evolution of the local temperature versus density relation during reionization. Our findings are as follows: The fraction of He III increases gradually until it becomes close to unity at z2.83.0z\sim 2.8-3.0. The He II mean optical depth decreases from τ10\tau\sim 10 at z3.5z\geq 3.5 to τ0.5\tau\leq 0.5 at z2.5z\leq 2.5. The mean temperature rises gradually between z4z\sim 4 and z3z\sim 3 and declines slowly at lower redshifts. The model predicts a flattening of the temperature-density relation with significant increase in the scatter during reionization at z3z\sim 3. Towards the end of reionization the scatter is reduced and a tight relation is re-established. This scatter should be incorporated in the analysis of the Lyα\alpha forest at z3z\leq 3. Comparison with observational results of the optical depth and the mean temperature at moderate redshifts constrains several key physical parameters.Comment: 18 pages, 9 figures; Changed content. Accepted for publication in MNRA

    Spectrum of Eleven-dimensional Supergravity on a PP-wave Background

    Full text link
    We calculate the spectrum of the linearized supergravity around the maximally supersymmetric pp-wave background in eleven dimensions. The resulting spectrum agrees with that of zero-mode Hamiltonian of a supermembrane theory on the pp-wave background. We also discuss the connection with the Kaluza-Klein zero modes of AdS_4 x S^7 background.Comment: 17 pages, no figures, LaTeX2e, typos correcte

    CBR Anisotropy in an Open Inflation, CDM Cosmogony

    Full text link
    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Ω0\Omega_0 \sim 0.3 -- 0.4, the COBE normalized open model appears to be consistent with most observations.Comment: (12 pages, plain TeX; 3 figures available upon request from the authors), IASSNS-HEP-94/39, PUPT-1470, POP-568, CfPA-TH-94-27, UTAP-18
    corecore