2,550 research outputs found
Non-Gaussian bubbles in the sky
We point out a possible generation mechanism of non-Gaussian bubbles in the
sky due to bubble nucleation in the early universe. We consider a curvaton
scenario for inflation and assume that the curvaton field phi, whose energy
density is subdominant during inflation but which is responsible for the
curvature perturbation of the universe, is coupled to another field sigma which
undergoes false vacuum decay through quantum tunneling. For this model, we
compute the skewness of the curvaton fluctuations due to its interaction with
sigma during tunneling, that is, on the background of an instanton solution
that describes false vacuum decay. We find that the resulting skewness of the
curvaton can become large in the spacetime region inside the bubble. We then
compute the corresponding skewness in the statistical distribution of the
cosmic microwave background (CMB) temperature fluctuations. We find a
non-vanishing skewness in a bubble-shaped region in the sky. It can be large
enough to be detected in the near future, and if detected it will bring us
invaluable information about the physics in the early universe.Comment: 6 pages, 6 figure
Electron correlation in FeSe superconductor studied by bulk-sensitive photoemission spectroscopy
We have investigated the electronic structures of recently discovered
superconductor FeSe by soft-x-ray and hard-x-ray photoemission spectroscopy
with high bulk sensitivity. The large Fe 3d spectral weight is located in the
vicinity of the Fermi level (EF), which is demonstrated to be a coherent
quasi-particle peak. Compared with the results of the band structure
calculation with local-density approximation, Fe 3d band narrowing and the
energy shift of the band toward EF are found, suggesting an importance of the
electron correlation effect in FeSe. The self energy correction provides the
larger mass enhancement value (Z^-1=3.6) than in Fe-As superconductors and
enables us to separate a incoherent part from the spectrum. These features are
quite consistent with the results of recent dynamical mean-field calculations,
in which the incoherent part is attributed to the lower Hubbard band.Comment: 8 pages, 5 figures, 1 talbl
Enhancement of the Positron Intensity by a Tungsten Single Crystal Target at the KEKB Injector Linac
International audienceA new tungsten single-crystalline positron target has been successfully employed for generation of the intense positron beam at the KEKB injector linac in September 2006. The target is composed of a tungsten single-crystal with a thickness of 10.5 mm. The positron production target is bombarded at an incident electron energy of 4 GeV, and the produced positrons are collected and accelerated up to the final injection energy of 3.5 GeV in the succeeding sections. A conventional tungsten plate with a thickness of 14 mm has been used previously, and the conversion efficiency (Ne^+/Ne^-), the ratio between the number of positrons (Ne^+) captured in the positron capture section and the number of the incident electrons (Ne^-), was 0.20 on average. By replacing the tungsten plate with the tungsten crystal, it increased to 0.25 on average. The increase of the conversion efficiency has boosted the positron intensity to its maximum since the beginning of KEKB operation in 1999. Now this new positron source is stably operating and is contributing to increasing the integrated luminosity of the KEKB B-factory
The HypHI project: Hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and FAIR
The HypHI collaboration aims to perform a precise hypernuclear spectroscopy
with stable heavy ion beams and rare isotope beams at GSI and fAIR in order to
study hypernuclei at extreme isospin, especially neutron rich hypernuclei to
look insight hyperon-nucleon interactions in the neutron rich medium, and
hypernuclear magnetic moments to investigate baryon properties in the nuclei.
We are currently preparing for the first experiment with Li and C
beams at 2 AGeV to demonstrate the feasibility of a precise hypernuclear
spectroscopy by identifying H, H and
He. The first physics experiment on these hypernuclei is
planned for 2009. In the present document, an overview of the HypHI project and
the details of this first experiment will be discussed.Comment: 5 pages, 2 figures, French-Japanese symposium 2008, Paris (France
Experimental study of positron production from a 2.55-mm-thick silicon crystal target using 8-GeV channeling electron beams with high-bunch charges
We have investigated quenching phenomena of channeling radiation through positron production from a silicon crystal hit by a single-bunch electron beam with high-bunch charge at the 8-GeV electron/positron injector linac. The crystal axis, left angle bracket1 1 0right-pointing angle bracket, was aligned to the electron beam with a precise goniometer, and positrons produced in the forward direction with a momentum of 20 MeV/c were detected with a magnetic spectrometer. Positron yields were measured by varying the charge in a bunch with a typical bunch length of not, vert, similar10 ps from 0.1 nC to 2 nC. The corresponding instantaneous current density ranged from 0.15 × 104 to 1.2 × 104 A/cm2. The results show that, at these current densities, the positron yield is proportional to the bunch charge within the experimental accuracy, which implies that no non-linear phenomena are observed in channeling radiation
Observation of Spin-Dependent Charge Symmetry Breaking in Interaction: Gamma-Ray Spectroscopy of He
The energy spacing between the ground-state spin doublet of He(1,0) was determined to be keV, by measuring
rays for the transition with a high efficiency germanium
detector array in coincidence with the He He
reaction at J-PARC. In comparison to the corresponding energy spacing in the
mirror hypernucleus H, the present result clearly indicates the
existence of charge symmetry breaking (CSB) in interaction. It is
also found that the CSB effect is large in the ground state but is by one
order of magnitude smaller in the excited state, demonstrating that the
CSB interaction has spin dependence
- …
