3,492 research outputs found

    Fracture strength and toughness of ultra high strength TRIP aided steels

    Get PDF
    The performance of hydrogen embrittlement, fatigue properties and impact toughness of ultra high strength transformation induced plasticity aided steels with bainitic ferrite matrix (TBF steels) has been discussed. Some characteristics and deformation transformation mechanism of the retained austenite has also been discussed. It has been observed that mechanical stability and volume fraction of the interlath retained austenite phase in the TBF steels play an important role in increasing delayed fracture strength, fatigue limit and impact toughness.ArticleMATERIALS SCIENCE AND TECHNOLOGY. 25(9):1108-1117 (2009)journal articl

    Ellipsoidal Calculus, Singular Perturbations and the State Estimation Problems for Uncertain Systems

    Get PDF
    One of the basic elements of dynamic modelling of complex systems is the linkage and synchronization of subsystems that develop in different time scales. The relevant techniques applied here are related to a singular perturbation theory for differential systems. A more complicated issue arises for uncertain systems described by differential inclusions, for which an appropriate theory is being developed. In order to make the theory constructive, some further steps are necessary. These are presented in this paper, where a computer-implementable "ellipsoidal" version is given. The results are particularly relevant to the linkage of models related to environmental, demographic and economic problems

    Large Asian dust layers continuously reached North America in April 2010

    Get PDF
    The NASA space-borne Mie-lidar system CALIPSO/CALIOP revealed that multiple large Asian dust layers with a horizontal scale of 2000–3000 km reached North America, occupying the full troposphere, in April 2010. This kind of dust layer transport has not been reported before. Our analysis of CALIOP data and global aerosol model results revealed that frequent dust emissions occurred in northwestern China because of stronger-than-average near-surface winds, and that strong stable westerly winds carried the Asian dust from northwestern China to the central Pacific Ocean. A negative pressure anomaly was located in the eastern Pacific Ocean, and the main dust transport path was split into two branches: a northern path and a southern path over North America. Northern-path dust was trapped and stagnant for a longer time than southern path dust and finally subsided under a high-pressure system. Dust along the southern path reached the central US. These complex conditions resulted in a multi-layered structure of dust over North America

    Adjoint inversion modeling of Asian dust emission using lidar observations

    Get PDF
    International audienceA four-dimensional variational (4D-Var) data assimilation system for a regional dust model (RAMS/CFORS-4DVAR; RC4) is applied to an adjoint inversion of a heavy dust event over eastern Asia during 20 March?4 April 2007. The vertical profiles of the dust extinction coefficients derived from NIES Lidar network are directly assimilated, with validation using observation data. Two experiments assess impacts of observation site selection: Experiment A uses five Japanese observation sites located downwind of dust source regions; Experiment B uses these and two other sites near source regions. Assimilation improves the modeled dust extinction coefficients. Experiment A and Experiment B assimilation results are mutually consistent, indicating that observations of Experiment A distributed over Japan can provide comprehensive information related to dust emission inversion. Time series data of dust AOT calculated using modeled and Lidar dust extinction coefficients improve the model results. At Seoul, Matsue, and Toyama, assimilation reduces the root mean square differences of dust AOT by 35?40%. However, at Beijing and Tsukuba, the RMS differences degrade because of fewer observations during the heavy dust event. Vertical profiles of the dust layer observed by CALIPSO are compared with assimilation results. The dense dust layer was trapped at potential temperatures (?) of 280?300 K and was higher toward the north; the model reproduces those characteristics well. Latitudinal distributions of modeled dust AOT along the CALIPSO orbit paths agree well with those of CALIPSO dust AOT, OMI AI, and MODIS coarse-mode AOT, capturing the latitude at which AOTs and AI have high values. Assimilation results show increased dust emissions over the Gobi Desert and Mongolia; especially for 29?30 March, emission flux is about 10 times greater. Strong dust uplift fluxes over the Gobi Desert and Mongolia cause the heavy dust event. Total optimized dust emissions are 57.9 Tg (Experiment A; 57.8% larger than before assimilation) and 56.3 Tg (Experiment B; 53.4% larger)

    Numerical modeling of Asian dust emission and transport with adjoint inversion using LIDAR network observations

    No full text
    International audienceA four-dimensional variational (4D-Var) data assimilation system for a regional dust model (RAMS/CFORS-4DVAR; RC4) is applied to a heavy dust event which occurred between 20 March and 4 April 2007 over eastern Asia. The vertical profiles of the dust extinction coefficients derived from NIES LIDAR observation network are directly assimilated. We conduct two experiments to evaluate impacts of selections of observation sites: Experiment A uses five Japanese observation sites located only downwind of dust source regions; the other Experiment B uses these sites together with two other sites near source regions (China and Korea). Validations using various observation data (e.g., PM10 concentration, MODIS AOT, OMI Aerosol Index, and the dust extinction coefficient derived by space-based LIDAR NASA/CALIPSO) are demonstrated. The modeled dust extinction coefficients are improved considerably through the assimilation. Assimilation results of Experiment A are consistent with those of Experiment B, indicating that observations of Experiment A can capture the dust event correctly and include sufficient information for dust emission inversion. Time series of dust AOT calculated by modeled and LIDAR dust extinction coefficients show good agreement. At Seoul, Matsue, and Toyama, assimilation reduces the root mean square errors of dust AOT by 31?32%. Vertical profiles of the dust layer observed by CALIPSO are also compared with assimilation results. The dense dust layer was trapped between ?=280?300 K and elevated higher toward the north; the model reproduces those characteristics well. The modeled dust AOT along the orbit paths agrees well with the CALIPSO dust AOT, OMI AI, and the coarse mode AOT retrieved from MODIS; especially the modeled dust AOT and the MODIS coarse mode AOT are consistent quantitatively. Assimilation results increase dust emissions over the Gobi Desert and Mongolia considerably; especially between 29 and 30 March, emission flux is increased by about 2?3 times. The heavy dust event is caused by the heavy dust uplift flux over the Gobi Desert and Mongolia during those days. We obtain the total optimized dust emissions of 57.9 Tg (Experiment A; 57.8% larger than before assimilation) and 56.3 Tg (Experiment B; 53.4% larger)

    Projectile Fragmentation of the Extremely Neutron-Rich Nucleus ^<11>Li at o.79 GeV/nucleon

    Full text link
    Projectile fragmentations of ^Li, ^He, and ^He have been measured at 0.79 GeV/nucleon. Production cross sections and momentum distributions of the produced isotopes (Z≥2) are measured inclusively. Transverse-momentum distributions of ^Li from the fragmentation of ^Li show two Gaussian components of different widths. The width of the wide component is consistent with the values observed in the fragmentation of stable nuclei, whereas the other component shows an extremely narrow width reflecting the weak binding of the two outer neutrons in the ^Li nucleus

    Asian dust outflow in the PBL and free atmosphere retrieved by NASA CALIPSO and an assimilated dust transport model

    Get PDF
    International audienceThree-dimensional structures of Asian dust transport in the planetary boundary layer (PBL) and free atmosphere occurring successively during the end of May 2007 were clarified using results of space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and results simulated using a data-assimilated version of a dust transport model (RC4) based on a ground-based NIES lidar network. Assimilated results mitigated overestimation of dust concentration by reducing 17.4% of dust emissions and improved the root mean square difference (RMSD) of dust AOT between the model and NIES lidar by 31.2?66.9%. The dust layer depths, vertical and horizontal structure simulated by RC4 agreed with CALIOP from the dust source region to a long-range downwind region for which 3-D distribution of dust clouds had not been clarified previously. Based on CALIOP and RC4, two significant transport mechanisms of Asian dust in the PBL and free atmosphere were clarified: a low level dust outbreak within the dry slot region of a well developed low-pressure system, and formation of an elevated dust layer within the warm sector of a low-pressure system. Finally, the aging of pure dust particles was investigated using the particle depolarization ratio (PDR) at 532 nm and the color ratio (CR) at 1064 nm and 532 nm for the low-altitude dust transport case. Aerosols with high PDR were observed uniformly over the dust source region. As the dust cloud was transported to the eastern downwind regions, aerosols with low PDR and high CR were found in the layer of less than 1 km height, suggesting changes from the external to internal mixing state of spherical aerosols and dust in the surface layer
    • …
    corecore