201 research outputs found

    前期思春期女子におけるやせ願望とソーシャルネットワーキングサービスの関連についての疫学的検討

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 川上 憲人, 東京大学准教授 金生 由紀子, 東京大学准教授 清水 潤, 東京大学講師 岩田 淳, 東京大学准教授 宮本 有紀University of Tokyo(東京大学

    Calcium-dependent regulation of Rho and myosin phosphatase in vascular smooth muscle

    Get PDF
    Phosphorylation of 20 kD myosin light chain (MLC) is a critical process in eliciting smooth muscle contraction. Excitatory receptor agonists increase the extent of MLC phosphorylation by both activating myosin light chain kinase (MLCK) and inhibiting myosin phosphatase (MP). Activation of MLCK is dependent on Ca2+ and calmodulin, while inhibition of MP is dependent on the small guanosine triphosphatase Rho and Rho kinase. Receptor agonists were previously shown to induce Rho activation via the heterotrimeric G12/13 protein, largely in non-muscle cells. We recently discovered the novel Ca2+-dependent activation of Rho in vascular smooth muscle. This Ca2+-dependent Rho activation mechanism operates upon stimulation of vascular smooth muscle by either membrane depolarization or Gq-coupled vasoconstrictor receptors. Thus, Ca2+ induces MLC phosphorylation through both MLCK stimulation and MP inhibition. We found that phosphoinositide 3-kinase class II . isoform (PI3K-C2.) is involved in the Ca2+-dependent Rho activation and MP inhibition. PI3K-C2. appears to participate in regulation of vascular Rho activity and tone in vivo. These observations also indicate that PI3Ks exert isoform-specificeffectsonvasculartonethrough mechanisms involving regulation of endothelial nitric oxide production and smooth muscle MP activity.Biomedical Reviews 2005; 16: 13-21

    Signaling mechanisms for positive and negative regulation of cell motility by sphingosine-1-phosphate receptors

    Get PDF
    Sphingosine-1-phosphate (S1P) exerts positive and negative effects on cell migration apparently in a cell-type-dependent manner. Our data suggest that the bimodal actions of S1P on cell migration is due to receptor subtype-specific positive and negative regulation of Rho family GTPase, Rac; S1P1 and S1P3 mediate Rac stimulation and chemotaxis whereas S1P2 mediates Rac inhibition and chemorepulsion. The stimulatory effects of S1P 1 and S1P3 on Rac and, subsequently on migration, are mediated by Gi. The inhibitory effect of SlP2 acts on G12/13 and Rho. S1P exerts inhibitory effects on some tumor cell migration and invasion via S1P2. S1P2 also mediates the inhibition of hematogenous metastasis. In contrast, exogenously expressed S1P1 has the reverse effect, it stimulates invasion and metastasis. S1P also exerts a similar bimodal action on vascular endothelial cells and, thereby, angiogenesis. The examples suggest that control of S1P receptor activity using a receptor subtype-specific agonist and antagonist may have beneficial effects on disorders, including cancer, and vascular diseases. © Springer-Verlag Tokyo 2006. All rights reserved.[Book Chapter] Y. Hirabayashi, Y. Igarashi, A.H. Merrill, Jr. (eds.), Sphingolipid biology, Springer-Verlag, c200

    Fertilization controls tiller numbers via transcriptional regulation of a MAX1-like gene in rice cultivation

    Get PDF
    低施肥でも穂数が減らず、収量を確保できるイネを開発 --ゲノム編集技術で、SDGs時代の新しいイネ遺伝資源を創成--. 京都大学プレスリリース. 2023-06-13.Fertilization controls various aspects of cereal growth such as tiller number, leaf size, and panicle size. However, despite such benefits, global chemical fertilizer use must be reduced to achieve sustainable agriculture. Here, based on field transcriptome data from leaf samples collected during rice cultivation, we identify fertilizer responsive genes and focus on Os1900, a gene orthologous to Arabidopsis thaliana MAX1, which is involved in strigolactone biosynthesis. Elaborate genetic and biochemical analyses using CRISPR/Cas9 mutants reveal that Os1900 together with another MAX1-like gene, Os5100, play a critical role in controlling the conversion of carlactone into carlactonoic acid during strigolactone biosynthesis and tillering in rice. Detailed analyses of a series of Os1900 promoter deletion mutations suggest that fertilization controls tiller number in rice through transcriptional regulation of Os1900, and that a few promoter mutations alone can increase tiller numbers and grain yields even under minor-fertilizer conditions, whereas a single defective os1900 mutation does not increase tillers under normal fertilizer condition. Such Os1900 promoter mutations have potential uses in breeding programs for sustainable rice production

    Anaphylactic shock due to latex allergy

    Get PDF
    Natural rubber latex (NRL) allergy is one of the most important causes of severe anaphylaxis during medical intervention. We report a pediatric case of latex allergy with multiple surgical histories. A 12-year-old girl developed anaphylactic shock during the pyeloplasty for ureteropelvic junction restenosis. Latex gloves or medications used during the surgery were suspected to be the cause of anaphylactic shock. We diagnosed her latex allergy on the basis of the results that serum latex-specific IgE, skin prick tests of extract from NRL gloves and recombinant Hev b 6.02 solution were positive. Basophil activation test of NRL gloves was also positive, supporting the diagnosis of immediate allergic reactions caused by NRL. It was speculated that a history of multiple surgeries in infancy became a trigger of sensitization to latex in this patient. Reoperation after the diagnosis of NRL allergy was carried out in a latex-free environment and completed without any allergic symptoms. It would be necessary to perform the pre-screening of latex allergy to prevent the onset of latex allergy especially in the patients with multiple surgical histories

    Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model

    Get PDF
    This report shows that interleukin (IL) 17–producing T helper type 17 (Th17) cells predominantly express CC chemokine receptor (CCR) 6 in an animal model of rheumatoid arthritis (RA). Th17 cells induced in vivo in normal mice via homeostatic proliferation similarly express CCR6, whereas those inducible in vitro by transforming growth factor β and IL-6 additionally need IL-1 and neutralization of interferon (IFN) γ and IL-4 for CCR6 expression. Forced expression of RORγt, a key transcription factor for Th17 cell differentiation, induces not only IL-17 but also CCR6 in naive T cells. Furthermore, Th17 cells produce CCL20, the known ligand for CCR6. Synoviocytes from arthritic joints of mice and humans also produce a large amount of CCL20, with a significant correlation (P = 0.014) between the amounts of IL-17 and CCL20 in RA joints. The CCL20 production by synoviocytes is augmented in vitro by IL-1β, IL-17, or tumor necrosis factor α, and is suppressed by IFN-γ or IL-4. Administration of blocking anti-CCR6 monoclonal antibody substantially inhibits mouse arthritis. Thus, the joint cytokine milieu formed by T cells and synovial cells controls the production of CCL20 and, consequently, the recruitment of CCR6+ arthritogenic Th17 cells to the inflamed joints. These results indicate that CCR6 expression contributes to Th17 cell function in autoimmune disease, especially in autoimmune arthritis such as RA

    G12/13 and Gq mediate S1P2-induced inhibition of Rac and migration in vascular smooth muscle in a manner dependent on Rho but not Rho kinase

    Get PDF
    金沢大学医薬保健研究域医学系Aims: The lysophospholipid mediator sphingosine-1-phosphate (S1P) activates G protein-coupled receptors (GPCRs) to induce potent inhibition of platelet-derived growth factor (PDGF)-induced Rac activation and, thereby, chemotaxis in rat vascular smooth muscle cells (VSMCs). We explored the heterotrimeric G protein and the downstream mechanism that mediated S1P inhibition of Rac and cell migration in VSMCs. Methods and results: S1P inhibition of PDGF-induced cell migration and Rac activation in VSMCs was abolished by the selective S1P2 receptor antagonist JTE-013. The C-terminal peptides of Gα subunits (Gα-CTs) act as specific inhibitors of respective G protein-GPCR coupling. Adenovirus-mediated expression of Gα12-CT, Gα13-CT, and Gα q-CT, but not that of Gαs-CT or LacZ or pertussis toxin treatment, abrogated S1P inhibition of PDGF-induced Rac activation and migration, indicating that both G12/13 and Gq classes are necessary for the S1P inhibition. The expression of Gαq-CT as well as Gα12-CT and Gα13-CT also abolished S1P-induced Rho stimulation. C3 toxin, but not a Rho kinase inhibitor or a dominant negative form of Rho kinase, abolished S1P inhibition of PDGF-induced Rac activation and cell migration. The angiotensin II receptor AT1, which robustly couples to Gq, did not mediate either Rho activation or inhibition of PDGF-induced Rac activation or migration, suggesting that activation of Gq alone was not sufficient for Rho activation and resultant Rac inhibition. However, the AT1 receptor fused to Gα12 was able to induce not only Rho stimulation but also inhibition of PDGF-induced Rac activation and migration. Phospholipase C inhibition did not affect S1P-induced Rho activation, and protein kinase C activation by a phorbol ester did not mimic S1P action, suggesting that S1P inhibition of migration or Rac was not dependent on the phospholipase C pathway. Conclusion: These observations together suggest that S1P2 mediates inhibition of Rac and migration through the coordinated action of G 12/13 and Gq for Rho activation in VSMCs. © The Author 2008.

    ヒト細胞傷害性γδT細胞は膠芽腫細胞株を殺傷する:膠芽腫患者に対する免疫細胞治療の意義

    Get PDF
    Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell–cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32 % U87MG, 15 % U138MG, 1 % A172, and 50 % K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.博士(医学)・甲第635号・平成27年5月28日© Springer Verlag. The definitive version is available at " http://dx.doi.org/10.1007/s11060-013-1258-4

    Sustained delivery of sphingosine-1-phosphate using poly(lactic-co-glycolic acid)-based microparticles stimulates Akt/ERK-eNOS mediated angiogenesis and vascular maturation restoring blood flow in ischemic limbs of mice

    Get PDF
    金沢大学医薬保健研究域医学系Therapeutic angiogenesis is a promising strategy for treating ischemia. The lysophospholipid mediator sphingosine-1-phosphate (S1P) acts on vascular endothelial cells to stimulate migration and tube formation, and plays the critical role in developmental angiogenesis. We developed poly(lactic-co-glycolic-acid) (PLGA)-based S1P-containing microparticles (PLGA-S1P), which are biodegradable and continuously release S1P, and studied the effects of PLGA-S1P on neovascularization in murine ischemic hindlimbs. Intramuscular injections of PLGA-S1P stimulated blood flow in C57BL/6 mice dose-dependently, with repeated administrations at a 3-day interval, rather than a single bolus or 6-day interval, over 28. days conferring the optimal stimulating effect. In Balb/c mice that exhibit limb necrosis and dysfunction due to retarded blood flow recovery, injections of PLGA-S1P stimulated blood flow with alleviation of limb necrosis and dysfunction. PLGA-S1P alone did not induce edema in ischemic limbs, and rather blocked vascular endothelial growth factor-induced edema. PLGA-S1P not only increased the microvessel densities in ischemic muscle, but promoted coverage of vessels with smooth muscle cells and pericytes, thus stabilizing vessels. PLGA-S1P stimulated Akt and ERK with increased phosphorylation of endothelial nitric oxide synthase in ischemic muscle. The effects of the nitric oxide synthase inhibitor, Nω-nitro-l-arginine methylester, showed that PLGA-S1P-induced blood flow stimulation was partially dependent on nitric oxide. Injections of PLGA-S1P also increased the expression of angiogenic factors and the recruitment of CD45-, CD11b- and Gr-1-positive myeloid cells, which are implicated in post-ischemic angiogenesis, into ischemic muscle. These results indicate that PLGA-based, sustained local delivery of S1P is a potentially useful therapeutic modality for stimulating post-ischemic angiogenesis. © 2010 Elsevier B.V
    corecore