1,181 research outputs found

    Matrix product representation of gauge invariant states in a Z_2 lattice gauge theory

    Full text link
    The Gauss law needs to be imposed on quantum states to guarantee gauge invariance when one studies gauge theory in hamiltonian formalism. In this work, we propose an efficient variational method based on the matrix product ansatz for a Z_2 lattice gauge theory on a spatial ladder chain. Gauge invariant low-lying states are identified by evaluating expectation values of the Gauss law operator after numerical diagonalization of the gauge hamiltonian.Comment: 15 pages, 6 figures, minor corrections, accepted for publication in JHE

    Analysis of Iophenoxic Acid Analogues in Small Indian Mongoose (\u3ci\u3eHerpestes Auropunctatus\u3c/i\u3e) Sera for Use as an Oral Rabies Vaccination Biological Marker

    Get PDF
    The small Indian mongoose (Herpestes auropunctatus) is a reservoir of rabies virus (RABV) in Puerto Rico and comprises over 70% of animal rabies cases reported annually. The control of RABV circulation in wildlife reservoirs is typically accomplished by a strategy of oral rabies vaccination (ORV). Currently no wildlife ORV program exists in Puerto Rico. Research into oral rabies vaccines and various bait types for mongooses has been conducted with promising results. Monitoring the success of ORV relies on estimating bait uptake by target species, which typically involves evaluating a change in RABV neutralizing antibodies (RVNA) post vaccination. This strategy may be difficult to interpret in areas with an active wildlife ORV program or in areas where RABV is enzootic and background levels of RVNA are present in reservoir species. In such situations, a biomarker incorporated with the vaccine or the bait matrix may be useful. We offered 16 captive mongooses placebo ORV baits containing ethyl-iophenoxic acid (et-IPA) in concentrations of 0.4% and 1% inside the bait and 0.14% in the external bait matrix. We also offered 12 captive mongooses ORV baits containing methyl-iophenoxic acid (me-IPA) in concentrations of 0.035%, 0.07% and 0.14% in the external bait matrix. We collected a serum sample prior to bait offering and then weekly for up to eight weeks post offering. We extracted Iophenoxic acids from sera into acetonitrile and quantified using liquid chromatography/mass spectrometry. We analyzed sera for et-IPA or me-IPA by liquid chromatography-mass spectrometry. We found adequate marking ability for at least eight and four weeks for et- and me-IPA, respectively. Both IPA derivatives could be suitable for field evaluation of ORV bait uptake in mongooses. Due to the longevity of the marker in mongoose sera, care must be taken to not confound results by using the same IPA derivative during consecutive evaluations

    Analysis of Iophenoxic Acid Analogues in Small Indian Mongoose (\u3ci\u3eHerpestes Auropunctatus\u3c/i\u3e) Sera for Use as an Oral Rabies Vaccination Biological Marker

    Get PDF
    The small Indian mongoose (Herpestes auropunctatus) is a reservoir of rabies virus (RABV) in Puerto Rico and comprises over 70% of animal rabies cases reported annually. The control of RABV circulation in wildlife reservoirs is typically accomplished by a strategy of oral rabies vaccination (ORV). Currently no wildlife ORV program exists in Puerto Rico. Research into oral rabies vaccines and various bait types for mongooses has been conducted with promising results. Monitoring the success of ORV relies on estimating bait uptake by target species, which typically involves evaluating a change in RABV neutralizing antibodies (RVNA) post vaccination. This strategy may be difficult to interpret in areas with an active wildlife ORV program or in areas where RABV is enzootic and background levels of RVNA are present in reservoir species. In such situations, a biomarker incorporated with the vaccine or the bait matrix may be useful. We offered 16 captive mongooses placebo ORV baits containing ethyl-iophenoxic acid (et-IPA) in concentrations of 0.4% and 1% inside the bait and 0.14% in the external bait matrix. We also offered 12 captive mongooses ORV baits containing methyl-iophenoxic acid (me-IPA) in concentrations of 0.035%, 0.07% and 0.14% in the external bait matrix. We collected a serum sample prior to bait offering and then weekly for up to eight weeks post offering. We extracted Iophenoxic acids from sera into acetonitrile and quantified using liquid chromatography/mass spectrometry. We analyzed sera for et-IPA or me-IPA by liquid chromatography-mass spectrometry. We found adequate marking ability for at least eight and four weeks for et- and me-IPA, respectively. Both IPA derivatives could be suitable for field evaluation of ORV bait uptake in mongooses. Due to the longevity of the marker in mongoose sera, care must be taken to not confound results by using the same IPA derivative during consecutive evaluations

    Various Super Yang-Mills Theories with Exact Supersymmetry on the Lattice

    Full text link
    We continue to construct lattice super Yang-Mills theories along the line discussed in the previous papers \cite{sugino, sugino2}. In our construction of N=2,4{\cal N}=2, 4 theories in four dimensions, the problem of degenerate vacua seen in \cite{sugino} is resolved by extending some fields and soaking up would-be zero-modes in the continuum limit, while in the weak coupling expansion some surplus modes appear both in bosonic and fermionic sectors reflecting the exact supersymmetry. A slight modification to the models is made such that all the surplus modes are eliminated in two- and three-dimensional models obtained by dimensional reduction thereof. N=4,8{\cal N}=4, 8 models in three dimensions need fine-tuning of three and one parameters respectively to obtain the desired continuum theories, while two-dimensional models with N=4,8{\cal N}=4, 8 do not require any fine-tuning.Comment: 28 pages, no figure, LaTeX, JHEP style; (v2) published version to JHEP; (v3) argument on the vacuum degeneracy revised, 34 page

    Generalized Theorems for Nonlinear State Space Reconstruction

    Get PDF
    Takens' theorem (1981) shows how lagged variables of a single time series can be used as proxy variables to reconstruct an attractor for an underlying dynamic process. State space reconstruction (SSR) from single time series has been a powerful approach for the analysis of the complex, non-linear systems that appear ubiquitous in the natural and human world. The main shortcoming of these methods is the phenomenological nature of attractor reconstructions. Moreover, applied studies show that these single time series reconstructions can often be improved ad hoc by including multiple dynamically coupled time series in the reconstructions, to provide a more mechanistic model. Here we provide three analytical proofs that add to the growing literature to generalize Takens' work and that demonstrate how multiple time series can be used in attractor reconstructions. These expanded results (Takens' theorem is a special case) apply to a wide variety of natural systems having parallel time series observations for variables believed to be related to the same dynamic manifold. The potential information leverage provided by multiple embeddings created from different combinations of variables (and their lags) can pave the way for new applied techniques to exploit the time-limited, but parallel observations of natural systems, such as coupled ecological systems, geophysical systems, and financial systems. This paper aims to justify and help open this potential growth area for SSR applications in the natural sciences

    Phase transition in the collisionless regime for wave-particle interaction

    Full text link
    Gibbs statistical mechanics is derived for the Hamiltonian system coupling self-consistently a wave to N particles. This identifies Landau damping with a regime where a second order phase transition occurs. For nonequilibrium initial data with warm particles, a critical initial wave intensity is found: above it, thermodynamics predicts a finite wave amplitude in the limit of infinite N; below it, the equilibrium amplitude vanishes. Simulations support these predictions providing new insight on the long-time nonlinear fate of the wave due to Landau damping in plasmas.Comment: 12 pages (RevTeX), 2 figures (PostScript

    Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2

    Full text link
    The linear dispersion relation in graphene[1,2] gives rise to a surprising prediction: the resistivity due to isotropic scatterers (e.g. white-noise disorder[3] or phonons[4-8]) is independent of carrier density n. Here we show that acoustic phonon scattering[4-6] is indeed independent of n, and places an intrinsic limit on the resistivity in graphene of only 30 Ohm at room temperature (RT). At a technologically-relevant carrier density of 10^12 cm^-2, the mean free path for electron-acoustic phonon scattering is >2 microns, and the intrinsic mobility limit is 2x10^5 cm^2/Vs, exceeding the highest known inorganic semiconductor (InSb, ~7.7x10^4 cm^2/Vs[9]) and semiconducting carbon nanotubes (~1x10^5 cm^2/Vs[10]). We also show that extrinsic scattering by surface phonons of the SiO2 substrate[11,12] adds a strong temperature dependent resistivity above ~200 K[8], limiting the RT mobility to ~4x10^4 cm^2/Vs, pointing out the importance of substrate choice for graphene devices[13].Comment: 16 pages, 3 figure
    • …
    corecore