50 research outputs found

    Seasonal variation in adult hip disease secondary to osteoarthritis and developmental dysplasia of the hip

    Get PDF
    AIM: To determine if there was a seasonal variation in adults undergoing total hip arthroplasty for end stage hip disease due to osteoarthritis (OA) or sequelae of developmental dysplasia of the hip (DDH). METHODS: The total hip registry from the author's institution for the years 1969 to 2013 was reviewed. The month of birth, age, gender, and ethnicity was recorded. Differences between number of births observed and expected in the winter months (October through February) and non-winter mo (March through September) were analyzed with the χ2 test. Detailed temporal variation was mathematically assessed using cosinor analysis. RESULTS: There were 7792 OA patients and 60 DDH patients who underwent total hip arthroplasty. There were more births than expected in the winter months for both the DDH (P < 0.0001) and OA (P = 0.0052) groups. Cosinor analyses demonstrated a peak date of birth on 1st October. CONCLUSION: These data demonstrate an increased prevalence of DDH and OA in those patients born in winter

    Bending Stiffness in Cadaveric and Composite Long Bones Following Total Joint Replacement

    Get PDF
    Several biomechanics studies have utilized commercially available replicate bone models as an alternative to cadaveric tissue specimens, in part due to their ease of handling and reduced expense. In an effort to validate the use of replicate bone specimens in biomechanics research, a number of studies have compared material properties of whole tibia and femur specimens to those of similar cadaveric specimens. Many of these validation studies have ascertained that the material properties of whole bone composite models fall within the range of those properties of cadaveric specimens, while offering reduced interspecimen variability. Current literature lacks, however, the direct comparison between cadaveric and composite specimens after the implantation of joint replacement components. Because of this, the interactions between orthopaedic implant and replicate bone model, and how those interactions compare with those between implants and cadaveric tissue, are relatively unknown. The purpose of this study was to evaluate the use of composite femur specimens in test scenarios aside from the whole-bone instances currently evaluated in the literature. Six cadaveric and six composite tibias and femurs were tested at different stages of surgical intervention. Flexural rigidity was measured using a 4-point bending test as a whole bone, after unicompartimental cut and implantation (UKA), and after total knee cut and implantation (TKA) or total hip arthroplasty (THA). The data did not show a definite trend between tests and specimens but is conclusive enough to use composite models for cadaveric specimens

    Human Constitutive Androstane Receptor Mediates Induction of CYP2B6 Gene Expression by Phenytoin

    Get PDF
    Compared with its rodent orthologs, little is known about the chemical specificity of human constitutive androstane receptor (hCAR) and its regulation of hepatic enzyme expression. Phenytoin (PHY), a widely used antiepileptic drug, is a potent inducer of CYP2B6 in primary human hepatocytes, but does not activate human pregnane X receptor (PXR) significantly in cell-based transfection assays at the same concentrations associated with potent induction of CYP2B6. Based on this observation, we hypothesized that PHY may be a selective activator of hCAR. In primary human hepatocytes, expression of CYP2B6 reporter genes containing phenobarbital-responsive enhancer module (PBREM) or PBREM/xenobiotic-responsive enhancer module (XREM) response elements were activated up to 14- and 28-fold, respectively, by 50 microm PHY. By contrast, parallel experiments in HepG2 cell lines co-transfected with an hPXR expression vector did not show increased reporter activity. These results indicated that a PXR-independent pathway, which is retained in primary hepatocytes, is responsible for PHY induction of CYP2B6. Further experiments revealed that PHY effectively translocates hCAR from the cytoplasm into the nucleus in both primary human hepatocytes and CAR(-/-) mice. Compared with vehicle controls, PHY administration significantly increased CYP2B6 reporter gene expression, when this reporter construct was delivered together with hCAR expression vector into CAR(-/-) mice. However, PHY did not increase reporter gene expression in CAR(-/-) mice in the absence of hCAR vector, implying that CAR is essential for mediating PHY induction of CYP2B6 gene expression. Taken together, these observations demonstrate that, in contrast to most of the known CYP2B6 inducers, PHY is a selective activator of CAR in humans

    Differential Regulation of Hepatic CYP2B6

    Full text link

    Garlic Extract Diallyl Sulfide (DAS) Activates Nuclear Receptor CAR to Induce the Sult1e1 Gene in Mouse Liver

    Get PDF
    Constituent chemicals in garlic extract are known to induce phase I and phase II enzymes in rodent livers. Here we have utilized Car+/+ and Car−/− mice to demonstrate that the nuclear xenobiotic receptor CAR regulated the induction of the estrogen sulfotransferase Sult1e1 gene by diallyl sulfide (DAS) treatment in mouse liver. DAS treatment caused CAR accumulation in the nucleus, resulting in a remarkable increase of SULT1E1 mRNA (3,200 fold) and protein in the livers of Car+/+ females but not of Car−/− female mice. DAS also induced other CAR-regulated genes such as Cyp2b10, Cyp3a11 and Gadd45β. Compared with the rapid increase of these mRNA levels, which began as early as 6 hourrs after DAS treatment, the levels of SULT1E1 mRNA began increasing after 24 hours. This slow response to DAS suggested that CAR required an additional factor to activate the Sult1e1 gene or that this activation was indirect. Despite the remarkable induction of SULT1E1, there was no decrease in the serum levels of endogenous E2 or increase of estrone sulfate while the clearance of exogenously administrated E2 was accelerated in DAS treated mice

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    肥大化軟骨におけるTgfbr2遺伝子の欠失により最終軟骨分化が遅延する

    Get PDF
    京都大学0048新制・課程博士博士(医学)甲第17259号医博第3737号新制||医||995(附属図書館)30016京都大学大学院医学研究科医学専攻(主査)教授 開 祐司, 教授 鈴木 茂彦, 教授 安達 泰治学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDA
    corecore