90 research outputs found

    Simulation of structural and electronic properties of amorphous tungsten oxycarbides

    Get PDF
    Electron beam induced deposition with tungsten hexacarbonyl W(CO)6 as precursors leads to granular deposits with varying compositions of tungsten, carbon and oxygen. Depending on the deposition conditions, the deposits are insulating or metallic. We employ an evolutionary algorithm to predict the crystal structures starting from a series of chemical compositions that were determined experimentally. We show that this method leads to better structures than structural relaxation based on guessed initial structures. We approximate the expected amorphous structures by reasonably large unit cells that can accommodate local structural environments that resemble the true amorphous structure. Our predicted structures show an insulator to metal transition close to the experimental composition at which this transition is actually observed. Our predicted structures also allow comparison to experimental electron diffraction patterns.Comment: 17 Pages, 11 figure

    Crystal and Electronic Structures of Alluaudite-Type Double Molybdates of Scandium and Indium

    Full text link
    Double molybdates of indium and scandium with alluaudite structure are prepared by the solid-phase synthesis method. The crystal structure of the indium containing compound is refined and optical characteristics of Na5R(Mo04)4(R = Sc, In) are determined. Electronic structures of Na5R(Mo04)4(R = Sc, In) molybdates are studied within the ab initio method taking account of Na/Sc(In) positional disordering. Calculations of the imaginary part of dielectric function predict the optical gap of ~3.8 eV, in accordance with absorption spectroscopy data. It is established that formation energy of sodium vacancies strongly depends on sodium position and Sc(In) concentration. As a result, various diffusion mechanisms may be activated in alluaudite-type compounds with high and low contents of metal R. © 2019, Pleiades Publishing, Ltd

    Ab initio probing of the electronic band structure and Fermi surface of fluorine-doped WO3 as a novel low-TC superconductor

    Full text link
    First-principles calculations were performed to investigate the electronic structure and the Fermi surface of the newly discovered low-temperature superconductor: fluorine-doped WO3. We find that F doping provides the transition of the insulating tungsten trioxide into a metallic-like phase WO3-xFx, where the near-Fermi states are formed mainly from W 5d with admixture of O 2p orbitals. The cooperative effect of fluorine additives in WO3 consists in change of electronic concentration as well as the lattice constant. At probing their influence on the near-Fermi states separately, the dominant role of the electronic factor for the transition of tungsten oxyfluoride into superconducting state was established. The volume of the Fermi surface gradually increases with the increase of the doping. In the sequence WO3 \rightarrow WO2.5F0.5 the effective atomic charges of W and O ions decrease, but much less, than it is predicted within the idealized ionic model - owing to presence of the covalent interactions W-O and W-F.Comment: 8 pages, 4 figure
    corecore