50 research outputs found

    The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA

    Full text link
    This research was originally published in Journal of Biological Chemistry. Ahmet Can Berkyurek, Isao Suetake, Kyohei Arita, Kohei Takeshita, Atsushi Nakagawa, Masahiro Shirakawa and Shoji Tajima. The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA. Journal of Biological Chemistry. 2014; 289, 379-386. © the American Society for Biochemistry and Molecular Biology

    NMR Characterization of the Interaction of the Endonuclease Domain of MutL with Divalent Metal Ions and ATP

    Get PDF
    Mizushima R, Kim JY, Suetake I, Tanaka H, Takai T, et al. (2014) NMR Characterization of the Interaction of the Endonuclease Domain of MutL withDivalent Metal Ions and ATP. PLoS ONE 9(6): e98554. doi:10.1371/journal.pone.009855

    NMR Characterization of the Interaction of the Endonuclease Domain of MutL with Divalent Metal Ions and ATP

    Get PDF
    Mizushima R, Kim JY, Suetake I, Tanaka H, Takai T, et al. (2014) NMR Characterization of the Interaction of the Endonuclease Domain of MutL withDivalent Metal Ions and ATP. PLoS ONE 9(6): e98554. doi:10.1371/journal.pone.009855

    5-Hydroxymethylcytosine Marks Sites of DNA Damage and Promotes Genome Stability.

    Get PDF
    5-hydroxymethylcytosine (5hmC) is a DNA base created during active DNA demethylation by the recently discovered TET enzymes. 5hmC has essential roles in gene expression and differentiation. Here, we demonstrate that 5hmC also localizes to sites of DNA damage and repair. 5hmC accumulates at damage foci induced by aphidicolin and microirradiation and colocalizes with major DNA damage response proteins 53BP1 and γH2AX, revealing 5hmC as an epigenetic marker of DNA damage. Deficiency for the TET enzymes eliminates damage-induced 5hmC accumulation and elicits chromosome segregation defects in response to replication stress. Our results indicate that the TET enzymes and 5hmC play essential roles in ensuring genome integrity
    corecore