8 research outputs found

    Extracellular Matrix Proteome Remodeling in Human Glioblastoma and Medulloblastoma

    Get PDF
    Medulloblastomas (MBs) and glioblastomas (GBMs) are high-incidence central nervous system tumors. Different origin sites and changes in the tissue microenvironment have been associated with the onset and progression. Here, we describe differences between the extracellular matrix (ECM) signatures of these tumors. We compared the proteomic profiles of MB and GBM decellularized tumor samples between each other and their normal decellularized brain site counterparts. Our analysis revealed that 19, 28, and 11 ECM proteins were differentially expressed in MBs, GBMs, and in both MBs and GBMs, respectively. Next, we validated key findings by using a protein tissue array with 53 MB and 55 GBM cases and evaluated the clinical relevance of the identified differentially expressed proteins through their analysis on publicly available datasets, 763 MB samples from the GSE50161 and GSE85217 studies, and 115 GBM samples from RNAseq-TCGA. We report a shift toward a denser fibrillary ECM as well as a clear alteration in the glycoprotein signature, which influences the tumor pathophysiology. MS data have been submitted to the PRIDE repository, project accession: PXD023350

    Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis

    Get PDF
    Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known

    Morphometric analyses of normal pediatric brachial biceps and quadriceps muscle tissue

    No full text
    Pediatric normal brachial biceps (14 specimens) and quadriceps muscles (14 specimens) were studied by immunohistochemistry to quantify fiber-type, diameter and distribution, capillary density, presence of inflammatory cells (CD3, CD20, CD68) and expression of neonatal myosin and MHC class 1 proteins. Brachial biceps showed more fast-twitch fibers and lower capillary/fiber ratio than quadriceps. The mean diameter of both fiber types was smaller in biceps than quadriceps. Fast-fibers were smaller than slow-fibers, and capillary/fiber ratio was <1.0 in both muscles. Fiber size and capillary / fiber ratio increased with age. Normal limits for infiltrating haematopoietic cells were <4 T lymphocytes, or CD68+ cells, very few B cells, <6 neonatal myosin positive fibers, and no fibers MHC class 1 positive in one x20 field, for both muscles. The present comparison of quantitative findings between brachial biceps and quadriceps may allow standardization of the assessment of pathological changes in both pediatric muscles

    Recessive COL6A2 C-globular Missense Mutations in Ullrich Congenital Muscular Dystrophy: ROLE OF THE C2a SPLICE VARIANT*

    No full text
    Ullrich congenital muscular dystrophy (UCMD) is a disabling and life-threatening disorder resulting from either recessive or dominant mutations in genes encoding collagen VI. Although the majority of the recessive UCMD cases have frameshift or nonsense mutations in COL6A1, COL6A2, or COL6A3, recessive structural mutations in the COL6A2 C-globular region are emerging also. However, the underlying molecular mechanisms have remained elusive. Here we identified a homozygous COL6A2 E624K mutation (C1 subdomain) and a homozygous COL6A2 R876S mutation (C2 subdomain) in two UCMD patients. The consequences of the mutations were investigated using fibroblasts from patients and cells stably transfected with the mutant constructs. In contrast to expectations based on the clinical severity of these two patients, secretion and assembly of collagen VI were moderately affected by the E624K mutation but severely impaired by the R876S substitution. The E624K substitution altered the electrostatic potential of the region surrounding the metal ion-dependent adhesion site, resulting in a collagen VI network containing thick fibrils and spots with densely packed microfibrils. The R876S mutation prevented the chain from assembling into triple-helical collagen VI molecules. The minute amount of collagen VI secreted by the R876S fibroblasts was solely composed of a faster migrating chain corresponding to the C2a splice variant with an alternative C2 subdomain. In transfected cells, the C2a splice variant was able to assemble into short microfibrils. Together, the results suggest that the C2a splice variant may functionally compensate for the loss of the normal COL6A2 chain when mutations occur in the C2 subdomain

    Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis

    No full text
    corecore