182 research outputs found

    Respiration-Induced Intraorgan Deformation of the Liver: Implications for Treatment Planning in Patients Treated With Fiducial Tracking.

    Get PDF
    Stereotactic body radiation therapy is a well-tolerated modality for the treatment of primary and metastatic liver lesions, and fiducials are often used as surrogates for tumor tracking during treatment. We evaluated respiratory-induced liver deformation by measuring the rigidity of the fiducial configuration during the breathing cycle. Seventeen patients, with 18 distinct treatment courses, were treated with stereotactic body radiosurgery using multiple fiducials. Liver deformation was empirically quantified by measuring the intrafiducial distances at different phases of respiration. Data points were collected at the 0%, 50%, and 100% inspiration points, and the distance between each pair of fiducials was measured at the 3 phases. The rigid body error was calculated as the maximum difference in the intrafiducial distances. Liver disease was calculated with Child-Pugh score using laboratory values within 3 months of initiation of treatment. A peripheral fiducial was defined as within 1.5 cm of the liver edge, and all other fiducials were classified as central. For 5 patients with only peripheral fiducials, the fiducial configuration had more deformation (average maximum rigid body error 7.11 mm, range: 1.89-11.35 mm) when compared to patients with both central and peripheral and central fiducials only (average maximum rigid body error 3.36 mm, range: 0.5-9.09 mm, P = .037). The largest rigid body errors (11.3 and 10.6 mm) were in 2 patients with Child-Pugh class A liver disease and multiple peripheral fiducials. The liver experiences internal deformation, and the fiducial configuration should not be assumed to act as a static structure. We observed greater deformation at the periphery than at the center of the liver. In our small data set, we were not able to identify cirrhosis, which is associated with greater rigidity of the liver, as predictive for deformation. Treatment planning based only on fiducial localization must take potential intraorgan deformation into account

    ASTRO Journals' Data Sharing Policy and Recommended Best Practices.

    Get PDF
    Transparency, openness, and reproducibility are important characteristics in scientific publishing. Although many researchers embrace these characteristics, data sharing has yet to become common practice. Nevertheless, data sharing is becoming an increasingly important topic among societies, publishers, researchers, patient advocates, and funders, especially as it pertains to data from clinical trials. In response, ASTRO developed a data policy and guide to best practices for authors submitting to its journals. ASTRO's data sharing policy is that authors should indicate, in data availability statements, if the data are being shared and if so, how the data may be accessed

    Xevinapant plus radiotherapy in resected, high-risk, cisplatin-ineligible LA SCCHN:the phase III XRay Vision study design

    Get PDF
    There is a significant unmet need and lack of treatment options for patients with resected, high-risk, cisplatin-ineligible locally advanced squamous cell carcinoma of the head and neck (LA SCCHN). Xevinapant, a first-in-class, potent, oral, small-molecule IAP inhibitor, is thought to restore cancer cell sensitivity to chemotherapy and radiotherapy in clinical and preclinical studies. We describe the design of XRay Vision (NCT05386550), an international, randomized, double-blind, phase III study. Approximately 700 patients with resected, high-risk, cisplatin-ineligible LA SCCHN will be randomized 1:1 to receive 6 cycles of xevinapant or placebo, in combination with radiotherapy for the first 3 cycles. The primary end point is disease-free survival, and secondary end points include overall survival, health-related quality of life, and safety.</p

    ACR appropriateness criteria® nasal cavity and paranasal sinus cancers

    Full text link
    The American College of Radiology (ACR) Appropriateness Criteria are evidence‐based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer‐reviewed journals and the application of well‐established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. Here, we present the Appropriateness Criteria for cancers arising in the nasal cavity and paranasal sinuses (maxillary, sphenoid, and ethmoid sinuses). This includes clinical presentation, prognostic factors, principles of management, and treatment outcomes. Controversies regarding management of cervical lymph nodes are discussed. Rare and unusual nasal cavity cancers, such as esthesioneuroblastoma and sinonasal undifferentiated carcinomas, are included. © 2016 American College of Radiology. Head Neck, 2016 © 2016 Wiley Periodicals, Inc. Head Neck 39: 407–418, 2017Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136245/1/hed24639.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136245/2/hed24639_am.pd
    corecore