287 research outputs found

    Distinguishing Healthy Ageing from Dementia: A Biomechanical Simulation of Brain Atrophy Using Deep Networks

    Get PDF
    Biomechanical modeling of tissue deformation can be used to simulate different scenarios of longitudinal brain evolution. In this work, we present a deep learning framework for hyper-elastic strain modelling of brain atrophy, during healthy ageing and in Alzheimer’s Disease. The framework directly models the effects of age, disease status, and scan interval to regress regional patterns of atrophy, from which a strain-based model estimates deformations. This model is trained and validated using 3D structural magnetic resonance imaging data from the ADNI cohort. Results show that the framework can estimate realistic deformations, following the known course of Alzheimer’s disease, that clearly differentiate between healthy and demented patterns of ageing. This suggests the framework has potential to be incorporated into explainable models of disease, for the exploration of interventions and counterfactual examples

    Hyperlactatemia and Antiretroviral Therapy: The Swiss HIV Cohort Study

    Get PDF
    The prevalence, clinical presentation, and risk factors for hyperlactatemia among patients receiving antiretroviral therapy was determined during a 1-month period for patients in the Swiss HIV Cohort Study. Overall, 73 (8.3%) of 880 patients presented an increase in serum lactate of >1.1 times the upper normal limit (UNL). For 9 patients (1%), lactate elevation was moderate or severe (>2.2 times the UNL). Patients who presented with hyperlactatemia were more likely to be receiving stavudine with or without didanosine (odds ratio, 2.7; 95% confidence interval, 1.5-4.8), as compared with patients who received zidovudine-based regimens. The risk increased with increasing time receiving stavudine with or without didanosine. The association between hyperlactatemia and stavudine with or without didanosine was not biased by these medications being more recently available and, therefore, being given preferentially to patients who had prolonged use of nucleoside analog reverse-transcriptase inhibitors. Hyperlactatemia was associated with lipoatrophy, hyperlipidemia, and hyperglycemia. Age, sex, or stage of infection with human immunodeficiency virus were not predictive of hyperlactatemia. Determination of lactate levels may prove useful in the screening for mitochondrial toxicit

    Optimizing the Dice Score and Jaccard Index for Medical Image Segmentation: Theory & Practice

    Full text link
    The Dice score and Jaccard index are commonly used metrics for the evaluation of segmentation tasks in medical imaging. Convolutional neural networks trained for image segmentation tasks are usually optimized for (weighted) cross-entropy. This introduces an adverse discrepancy between the learning optimization objective (the loss) and the end target metric. Recent works in computer vision have proposed soft surrogates to alleviate this discrepancy and directly optimize the desired metric, either through relaxations (soft-Dice, soft-Jaccard) or submodular optimization (Lov\'asz-softmax). The aim of this study is two-fold. First, we investigate the theoretical differences in a risk minimization framework and question the existence of a weighted cross-entropy loss with weights theoretically optimized to surrogate Dice or Jaccard. Second, we empirically investigate the behavior of the aforementioned loss functions w.r.t. evaluation with Dice score and Jaccard index on five medical segmentation tasks. Through the application of relative approximation bounds, we show that all surrogates are equivalent up to a multiplicative factor, and that no optimal weighting of cross-entropy exists to approximate Dice or Jaccard measures. We validate these findings empirically and show that, while it is important to opt for one of the target metric surrogates rather than a cross-entropy-based loss, the choice of the surrogate does not make a statistical difference on a wide range of medical segmentation tasks.Comment: MICCAI 201

    Efficient multi-class fetal brain segmentation in high resolution MRI reconstructions with noisy labels

    Full text link
    Segmentation of the developing fetal brain is an important step in quantitative analyses. However, manual segmentation is a very time-consuming task which is prone to error and must be completed by highly specialized indi-viduals. Super-resolution reconstruction of fetal MRI has become standard for processing such data as it improves image quality and resolution. However, dif-ferent pipelines result in slightly different outputs, further complicating the gen-eralization of segmentation methods aiming to segment super-resolution data. Therefore, we propose using transfer learning with noisy multi-class labels to automatically segment high resolution fetal brain MRIs using a single set of seg-mentations created with one reconstruction method and tested for generalizability across other reconstruction methods. Our results show that the network can auto-matically segment fetal brain reconstructions into 7 different tissue types, regard-less of reconstruction method used. Transfer learning offers some advantages when compared to training without pre-initialized weights, but the network trained on clean labels had more accurate segmentations overall. No additional manual segmentations were required. Therefore, the proposed network has the potential to eliminate the need for manual segmentations needed in quantitative analyses of the fetal brain independent of reconstruction method used, offering an unbiased way to quantify normal and pathological neurodevelopment.Comment: Accepted for publication at PIPPI MICCAI 202

    LAMP: Large Deep Nets with Automated Model Parallelism for Image Segmentation

    Full text link
    Deep Learning (DL) models are becoming larger, because the increase in model size might offer significant accuracy gain. To enable the training of large deep networks, data parallelism and model parallelism are two well-known approaches for parallel training. However, data parallelism does not help reduce memory footprint per device. In this work, we introduce Large deep 3D ConvNets with Automated Model Parallelism (LAMP) and investigate the impact of both input's and deep 3D ConvNets' size on segmentation accuracy. Through automated model parallelism, it is feasible to train large deep 3D ConvNets with a large input patch, even the whole image. Extensive experiments demonstrate that, facilitated by the automated model parallelism, the segmentation accuracy can be improved through increasing model size and input context size, and large input yields significant inference speedup compared with sliding window of small patches in the inference. Code is available\footnote{https://monai.io/research/lamp-automated-model-parallelism}.Comment: MICCAI 2020 Early Accepted paper. Code is available\footnote{https://monai.io/research/lamp-automated-model-parallelism

    Sex-related differences in whole brain volumes at age 70 in association with hyperglycemia during adult life

    Get PDF
    Longitudinal studies of the relationship between hyperglycemia and brain health are rare and there is limited information on sex differences in associations. We investigated whether glycosylated haemoglobin (HbA1c) measured at ages of 53, 60-64 and 69 years, and cumulative glycemic index (CGI), a measure of cumulative glycemic burden, were associated with metrics of brain health in later life. Participants were from Insight 46, a sub-study of the Medical Research Council National Survey of Health and Development (NSHD) who undertook volumetric MRI, florbetapir amyloid-PET imaging and cognitive assessments at ages of 69-71. Analyses were performed using linear and logistic regression as appropriate, with adjustment for potential confounders. We observed a sex interaction between HbA1c and whole brain volume (WBV) at all three time points. Following stratification of our sample, we observed that HbA1c at all ages, and CGI were positively associated with lower WBV exclusively in females. HbA1c (or CGI) was not associated with amyloid status, white matter hyperintensities (WMHs), hippocampal volumes (HV) or cognitive outcomes in either sex. Higher HbA1c in adulthood is associated with smaller WBV at 69–71 years in females but not in males. This suggests that there may be preferential target organ damage in the brain for females with hyperglycemia

    SARS-CoV-2 infection following booster vaccination: Illness and symptom profile in a prospective, observational community-based case-control study

    Get PDF
    BACKGROUND: Booster COVID-19 vaccines have shown efficacy in clinical trials and effectiveness in real-world data against symptomatic and severe illness. However, some people still become infected with SARS-CoV-2 following a third (booster) vaccination. This study describes the characteristics of SARS-CoV-2 illness following a third vaccination and assesses the risk of progression to symptomatic disease in SARS-CoV-2 infected individuals with time since vaccination. METHODS: This prospective, community-based, case-control study used data from UK-based, adult (≥18 years) users of the COVID Symptom Study mobile application, self-reporting a first positive COVID-19 test between June 1, 2021 and April 1, 2022. To describe the characteristics of SARS-CoV-2 illness following a third vaccination, we selected cases and controls who had received a third and second dose of monovalent vaccination against COVID-19, respectively, and reported a first positive SARS-CoV-2 test at least 7 days after most recent vaccination. Cases and controls were matched (1:1) based on age, sex, BMI, time between first vaccination and infection, and week of testing. We used logistic regression models (adjusted for age, sex, BMI, level of social deprivation and frailty) to analyse associations of disease severity, overall disease duration, and individual symptoms with booster vaccination status. To assess for potential waning of vaccine effectiveness, we compared disease severity, duration, and symptom profiles of individuals testing positive within 3 months of most recent vaccination (reference group) to profiles of individuals infected between 3 and 4, 4–5, and 5–6 months, for both third and second dose. All analyses were stratified by time period, based on the predominant SARS-CoV-2 variant at time of infection (Delta: June 1, 2021–27 Nov, 2021; Omicron: 20 Dec, 2021-Apr 1, 2022). FINDINGS: During the study period, 50,162 (Delta period) and 162,041 (Omicron) participants reported a positive SARS-CoV-2 test. During the Delta period, infection following three vaccination doses was associated with lower odds of long COVID (symptoms≥ 4 weeks) (OR=0.83, CI[0.50–1.36], p < 0.0001), hospitalisation (OR=0.55, CI[0.39–0.75], p < 0.0001) and severe symptoms (OR=0.36, CI[0.27–0.49], p < 0.0001), and higher odds of asymptomatic infection (OR=3.45, CI[2.86–4.16], p < 0.0001), compared to infection following only two vaccination doses. During the Omicron period, infection following three vaccination doses was associated with lower odds of severe symptoms (OR=0.48, CI[0.42–0.55], p < 0.0001). During the Delta period, infected individuals were less likely to report almost all individual symptoms after a third vaccination. During the Omicron period, individuals were less likely to report most symptoms after a third vaccination, except for upper respiratory symptoms e.g. sneezing (OR=1.40, CI[1.18–1.35], p < 0.0001), runny nose (OR=1.26, CI[1.18–1.35], p < 0.0001), sore throat (OR=1.17, CI[1.10–1.25], p < 0.0001), and hoarse voice (OR=1.13, CI[1.06–1.21], p < 0.0001), which were more likely to be reported. There was evidence of reduced vaccine effectiveness during both Delta and Omicron periods in those infected more than 3 months after their most recent vaccination, with increased reporting of severe symptoms, long duration illness, and most individual symptoms. INTERPRETATION: This study suggests that a third dose of monovalent vaccine may reduce symptoms, severity and duration of SARS-CoV-2 infection following vaccination. For Omicron variants, the third vaccination appears to reduce overall symptom burden but may increase upper respiratory symptoms, potentially due to immunological priming. There is evidence of waning vaccine effectiveness against progression to symptomatic and severe disease and long COVID after three months. Our findings support ongoing booster vaccination promotion amongst individuals at high risk from COVID-19, to reduce severe symptoms and duration of illness, and health system burden. Disseminating knowledge on expected symptoms following booster vaccination may encourage vaccine uptake

    Early detection of COVID-19 in the UK using self-reported symptoms: a large-scale, prospective, epidemiological surveillance study

    Get PDF
    Background Self-reported symptoms during the COVID-19 pandemic have been used to train artificial intelligence models to identify possible infection foci. To date, these models have only considered the culmination or peak of symptoms, which is not suitable for the early detection of infection. We aimed to estimate the probability of an individual being infected with SARS-CoV-2 on the basis of early self-reported symptoms to enable timely self-isolation and urgent testing. Methods In this large-scale, prospective, epidemiological surveillance study, we used prospective, observational, longitudinal, self-reported data from participants in the UK on 19 symptoms over 3 days after symptoms onset and COVID-19 PCR test results extracted from the COVID-19 Symptom Study mobile phone app. We divided the study population into a training set (those who reported symptoms between April 29, 2020, and Oct 15, 2020) and a test set (those who reported symptoms between Oct 16, 2020, and Nov 30, 2020), and used three models to analyse the selfreported symptoms: the UK’s National Health Service (NHS) algorithm, logistic regression, and the hierarchical Gaussian process model we designed to account for several important variables (eg, specific COVID-19 symptoms, comorbidities, and clinical information). Model performance to predict COVID-19 positivity was compared in terms of sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) in the test set. For the hierarchical Gaussian process model, we also evaluated the relevance of symptoms in the early detection of COVID-19 in population subgroups stratified according to occupation, sex, age, and body-mass index. Findings The training set comprised 182 991 participants and the test set comprised 15 049 participants. When trained on 3 days of self-reported symptoms, the hierarchical Gaussian process model had a higher prediction AUC (0·80 [95% CI 0·80–0·81]) than did the logistic regression model (0·74 [0·74–0·75]) and the NHS algorithm (0·67 [0·67–0·67]). AUCs for all models increased with the number of days of self-reported symptoms, but were still high for the hierarchical Gaussian process model at day 1 (0·73 [95% CI 0·73–0·74]) and day 2 (0·79 [0·78–0·79]). At day 3, the hierarchical Gaussian process model also had a significantly higher sensitivity, but a non-statistically lower specificity, than did the two other models. The hierarchical Gaussian process model also identified different sets of relevant features to detect COVID-19 between younger and older subgroups, and between health-care workers and non-health-care workers. When used during different pandemic periods, the model was robust to changes in populations. Interpretation Early detection of SARS-CoV-2 infection is feasible with our model. Such early detection is crucial to contain the spread of COVID-19 and efficiently allocate medical resources. Funding ZOE, the UK Government Department of Health and Social Care, the Wellcome Trust, the UK Engineering and Physical Sciences Research Council, the UK National Institute for Health Research, the UK Medical Research Council, the British Heart Foundation, the Alzheimer’s Society, the Chronic Disease Research Foundation, and the Massachusetts Consortium on Pathogen Readiness

    Hippocampal subfield volumes and pre-clinical Alzheimer's disease in 408 cognitively normal adults born in 1946

    Get PDF
    BACKGROUND: The human hippocampus comprises a number of interconnected histologically and functionally distinct subfields, which may be differentially influenced by cerebral pathology. Automated techniques are now available that estimate hippocampal subfield volumes using in vivo structural MRI data. To date, research investigating the influence of cerebral β-amyloid deposition-one of the earliest hypothesised changes in the pathophysiological continuum of Alzheimer's disease-on hippocampal subfield volumes in cognitively normal older individuals, has been limited. METHODS: Using cross-sectional data from 408 cognitively normal individuals born in mainland Britain (age range at time of assessment = 69.2-71.9 years) who underwent cognitive assessment, 18F-Florbetapir PET and structural MRI on the same 3 Tesla PET/MR unit (spatial resolution 1.1 x 1.1 x 1.1. mm), we investigated the influences of β-amyloid status, age at scan, and global white matter hyperintensity volume on: CA1, CA2/3, CA4, dentate gyrus, presubiculum and subiculum volumes, adjusting for sex and total intracranial volume. RESULTS: Compared to β-amyloid negative participants (n = 334), β-amyloid positive participants (n = 74) had lower volume of the presubiculum (3.4% smaller, p = 0.012). Despite an age range at scanning of just 2.7 years, older age at time of scanning was associated with lower CA1 (p = 0.007), CA4 (p = 0.004), dentate gyrus (p = 0.002), and subiculum (p = 0.035) volumes. There was no evidence that white matter hyperintensity volume was associated with any subfield volumes. CONCLUSION: These data provide evidence of differential associations in cognitively normal older adults between hippocampal subfield volumes and β-amyloid deposition and, increasing age at time of scan. The relatively selective effect of lower presubiculum volume in the β-amyloid positive group potentially suggest that the presubiculum may be an area of early and relatively specific volume loss in the pathophysiological continuum of Alzheimer's disease. Future work using higher resolution imaging will be key to exploring these findings further

    Robust, reproducible clinical patterns in hospitalised patients with COVID-19

    Get PDF
    Background: Severe COVID-19 is characterised by fever, cough, and dyspnoea. Symptoms affecting other organ systems have been reported. However, it is the clinical associations of different patterns of symptoms which influence diagnostic and therapeutic decision-making. In this study, we applied simple machine learning techniques to a large prospective cohort of hospitalised patients with COVID-19 identify clinically meaningful sub-groups. Methods: We obtained structured clinical data on 59 011 patients in the UK (the ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised clustering approach to partition the first 25 477 cases according to symptoms reported at recruitment. We validated our findings in a second group of 33 534 cases recruited to ISARIC-4C, and in 4 445 cases recruited to a separate study of community cases. Findings: Unsupervised clustering identified distinct sub-groups. First, a core symptom set of fever, cough, and dyspnoea, which co-occurred with additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or productive cough. Presentations with a single reported symptom of dyspnoea or confusion were common, and a subgroup of patients reported few or no symptoms. Patients presenting with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms before presentation, and had lower 30-day mortality. Patients presenting with confusion, with or without core symptoms, were older and had a higher unadjusted mortality. Symptom clusters were highly consistent in replication analysis using a further 35446 individuals subsequently recruited to ISARIC-4C. Similar patterns were externally verified in 4445 patients from a study of self-reported symptoms of mild disease. Interpretation: The large scale of the ISARIC-4C study enabled robust, granular discovery and replication of patient clusters. Clinical interpretation is necessary to determine which of these observations have practical utility. We propose that four patterns are usefully distinct from the core symptom groups: gastro-intestinal disease, productive cough, confusion, and pauci-symptomatic presentations. Importantly, each is associated with an in-hospital mortality which differs from that of patients with core symptoms. These observations deepen our understanding of COVID-19 and will influence clinical diagnosis, risk prediction, and future mechanistic and clinical studies. Funding: Medical Research Council; National Institute Health Research; Well-come Trust; Department for International Development; Bill and Melinda Gates Foundation; Liverpool Experimental Cancer Medicine Centre
    • …
    corecore