20 research outputs found

    Tamarindus indica Extract Alters Release of Alpha Enolase, Apolipoprotein A-I, Transthyretin and Rab GDP Dissociation Inhibitor Beta from HepG2 Cells

    Get PDF
    Background: The plasma cholesterol and triacylglycerol lowering effects of Tamarindus indica extract have been previously described. We have also shown that the methanol extract of T. indica fruit pulp altered the expression of lipid-associated genes including ABCG5 and APOAI in HepG2 cells. In the present study, effects of the same extract on the release of proteins from the cells were investigated using the proteomics approach. Methodology/Principal Findings: When culture media of HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp were subjected to 2-dimensional gel electrophoresis, the expression of seven proteins was found to be significantly different (p<0.03125). Five of the spots were subsequently identified as alpha enolase (ENO1), transthyretin (TTR), apolipoprotein A-I (ApoA-I; two isoforms), and rab GDP dissociation inhibitor beta (GDI-2). A functional network of lipid metabolism, molecular transport and small molecule biochemistry that interconnects the three latter proteins with the interactomes was identified using the Ingenuity Pathways Analysis software. Conclusion/Significance: The methanol extract of T. indica fruit pulp altered the release of ENO1, ApoA-I, TTR and GDI-2 from HepG2 cells. Our results provide support on the effect of T. indica extract on cellular lipid metabolism, particularly that of cholesterol

    Gene expression profiles in human HepG2 cells treated with extracts of the Tamarindus indica fruit pulp

    Get PDF
    Tamarindus indicaL. (T. indica) or locally known as asam jawa belongs to the family of Leguminosae. The fruit pulp had been reported to have antioxidant activities and possess hypolipidaemic effects. In this study, we attempted to investigate the gene expression patterns in human hepatoma HepG2 cell line in response to treatment with low concentration of the fruit pulp extracts. Microarray analysis using Affymetrix Human Genome 1.0 S.T arrays was used in the study. Microarray data were validated using semi-quantitative RT–PCR and real-time RT–PCR. Amongst the significantly up-regulated genes were those that code for the metallothioneins (MT1M, MT1F, MT1X) and glutathione S-transferases (GSTA1, GSTA2, GST02) that are involved in stress response. APOA4, APOA5, ABCG5 and MTTP genes were also significantly regulated that could be linked to hypolipidaemic activities of the T. indica fruit pulp

    Piper betle L. Piperaceae

    Get PDF
    Artanthe hexagyna Miq.; Betela mastica Raf.; Chavica betle (L.) Miq.; Chavica blumei Miq.; Chavica chuvya Miq.; Chavica densa Miq.; Chavica siriboa (L.) Miq.; Cubeba melamiri Miq.; Cubeba seriboa Miq.; Macropiper potamogetonifolium (Opiz) Miq.; Piper anisodorum Blanco; Piper bathicarpum C.DC.; Piper bidentatum Stokes; Piper blancoi Merr.; Piper blumei (Miq.) Backer; Piper canaliculatum Opiz; Piper carnistilum C.DC.; Piper densum Blume; Piper fenixii C.DC.; Piper macgregorii C.DC.; Piper malamiri Blume; Piper malamiris L.; Piper malarayatense C.DC.; Piper marianum Opiz; Piper philippinense C.DC.; Piper pinguispicum C.DC. & Koord.; Piper potamogetonifolium Opiz; Piper puberulinodum C.DC.; Piper rubroglandulosum Chaveer. & Mokkamul; Piper saururus Burm.; Piper siriboa L.; Piperi betlum (L.) St.-Lag
    corecore