2 research outputs found

    Comparative Thermodynamic Analysis of Zinc Binding to the His/Cys Motif in Virion Infectivity Factor

    No full text
    HIV-1 virion infectivity factor (Vif) is an accessory protein that induces the proteasomal degradation of the host restriction factor, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G). Degradation of APOBEC3G requires the interaction of Vif with Cul5, the scaffold for an E3 ubiquitin ligase. A highly conserved region in HIV-1 Vif termed the HCCH motif binds zinc and is critical for recruitment of Cul5 and degradation of APOBEC3G. To gain thermodynamic and mechanistic insight into zinc binding to diverse Vif proteins, we have employed a combination of isothermal titration calorimetry, analytical ultracentrifugation, and Cul5 pull down assays. The proton linkage of zinc binding to HIV-1 Vif was analyzed under different buffer conditions and consistent with the release of two Cys-thiol protons upon zinc binding, supporting earlier EXAFS studies. Zinc binding to Vif proteins from HIV-1, SIV<sub>Agm</sub>, HIV-2, and SIV<sub>Mac</sub> followed a trend in which the enthalpy of zinc binding became less favorable and the entropy of zinc binding became more favorable. Using AUC, we determined that zinc induced oligomerization of Vif proteins from HIV-1 and SIV<sub>Agm</sub> but had little or no effect on the oligomeric properties of Vif proteins from HIV-2 and SIV<sub>Mac</sub>. The zinc dependence of Cul5 recruitment by Vif was investigated. All Vif proteins except HIV-2 Vif required zinc to stabilize the interaction with Cul5. The trends in enthalpy–entropy compensation, zinc-induced oligomerization, and Cul5 recruitment are discussed in terms of the <i>apo</i> conformation of the HCCH motif and the role of zinc in stabilizing the structure of Vif

    Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding

    No full text
    The ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimeric apo PBP leads to a tightening of the interface α-helices so that the hydrogen bonding pattern shifts to that of a 3<sub>10</sub> helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand
    corecore