36 research outputs found
Rapid change of superconductivity and electron-phonon coupling through 19% doping in Bi2212
Electron-boson coupling plays a key role in superconductivity for many
systems. However, in copper-based high-temperature () superconductors, its
relation to superconductivity remains controversial despite strong
spectroscopic fingerprints. Here we use angle-resolved photoemission
spectroscopy to find a striking correlation between the superconducting gap and
the bosonic coupling strength near the Brillouin zone boundary in
BiSrCaCuO. The bosonic coupling strength rapidly
increases from the overdoped Fermi-liquid regime to the optimally doped strange
metal, concomitant with the quadrupled superconducting gap and the doubled
gap-to-Tc ratio across the pseudogap boundary. This synchronized lattice and
electronic response suggests that the effects of electronic interaction and the
electron-phonon coupling become intimately entangled upon entering the strange
metal regime, which may in turn drive a stronger superconductivity.Comment: 40 pages, 12 figures, 1 tabl
Low Resistance Ohmic Contact to P-type Monolayer WSe2
Advanced microelectronics in the future may require semiconducting channel
materials beyond silicon. Two-dimensional (2D) semiconductors, characterized by
their atomically thin thickness, hold immense promise for high-performance
electronic devices at the nanometer scale with lower heat dissipation. One
challenge for achieving high-performance 2D semiconductor field effect
transistors (FET), especially for p-type materials, is the high electrical
contact resistance present at the metal-semiconductor interface. In
conventional bulk semiconductors, low resistance ohmic contact is realized
through heavy substitutional doping with acceptor or donor impurities at the
contact region. The strategy of substitutional doping, however, does not work
for p-type 2D semiconductors such as monolayer tungsten diselenide (WSe).In
this study, we developed highly efficient charge-transfer doping with
WSe/-RuCl heterostructures to achieve low-resistance ohmic
contact for p-type WSe transistors. We show that a hole doping as high as
310 cm can be achieved in the WSe-RuCl
heterostructure due to its type-III band alignment. It results in an Ohmic
contact with resistance lower than 4 k Ohm m at the p-type monolayer
WSe/metal junction. at room temperature. Using this low-resistance contact,
we demonstrate high-performance p-type WSe transistors with a saturation
current of 35 A m and an I/I ratio
exceeding 10 It could enable future microelectronic devices based on 2D
semiconductors and contribute to the extension of Moore's law
Recommended from our members
Low Resistance Contact to P‑Type Monolayer WSe2
Advanced microelectronics in the future may require semiconducting channel materials beyond silicon. Two-dimensional (2D) semiconductors, with their atomically thin thickness, hold great promise for future electronic devices. One challenge to achieving high-performance 2D semiconductor field effect transistors (FET) is the high contact resistance at the metal-semiconductor interface. In this study, we develop a charge-transfer doping strategy with WSe2/α-RuCl3 heterostructures to achieve low-resistance ohmic contact for p-type monolayer WSe2 transistors. We show that hole doping as high as 3 × 1013 cm-2 can be achieved in the WSe2/α-RuCl3 heterostructure due to its type-III band alignment, resulting in an ohmic contact with resistance of 4 kΩ μm. Based on that, we demonstrate p-type WSe2 transistors with an on-current of 35 μA·μm-1 and an ION/IOFF ratio exceeding 109 at room temperature
Examining Land Use/Land Cover Change and Its Prediction Based on a Multilayer Perceptron Markov Approach in the Luki Biosphere Reserve, Democratic Republic of Congo
Villages within the Luki Biosphere Reserve and the surrounding cities have undergone rapid demographic growth and urbanization that have impacted the reserve’s natural landscape. However, no study has focused on the spatiotemporal analysis of its land use/land cover. The present research aims at providing a comprehensive analysis of land use/land cover change in the Luki Biosphere Reserve from the year 1987 to 2020, and to predict its future change for the year 2038. Landsat images were classified in order to provide land use/land cover maps for the years 1987, 2002, 2017 and 2020. Based on these maps, change detection, gradient direction, and landscape metric analyses were performed. In addition, land use/land cover change prediction was carried out using the Multilayer Perceptron Markov model. The results revealed significant land use/land cover changes in the Luki Biosphere Reserve during the study period. Indeed, tremendous changes in the primary forest, which lost around 17.8% of its total area, were noted. Other classes, notably savannah, secondary forest, built-up area, fallow land and fields had gained 79.35, 1150.36, 67.63, 3852.12 hectares, respectively. Based on the landscape metric analysis, it was revealed that built-up areas and fallow land and fields experienced an aggregation trend, while other classes showed disaggregation and fragmentation trends. Analysis further revealed that village expansion has significantly affected the process of land use/land cover change in the Luki Biosphere Reserve. However, the prediction results revealed that the primary forest will continue to increase while built-up area, fallow land and fields will follow a trend similar to a previous one. As for secondary forest and savannah, the forecast revealed a decrease of the extent during the period extending from 2020 to 2038. The present findings will benefit the decision makers, particularly in the sustainable natural resources management of the Luki Biosphere Reserve
Impact of Land Use Change on Tree Diversity and Aboveground Carbon Storage in the Mayombe Tropical Forest of the Democratic Republic of Congo
The Mayombe tropical forest has experienced dramatic changes over several decades due to human activities. However, the impact of these changes on tree biodiversity and ecosystem services has not been studied yet. Such a study could advance the current knowledge on tree biodiversity and carbon storage within the Mayombe forest, which is presently under high anthropogenic pressures. This information could benefit decision-makers to design and implement strategies for biodiversity conservation and sustainable natural resource utilization. As such, biodiversity surveys were conducted within the forest under different land utilization regimes. To evaluate the effect of human utilization on tree biodiversity and ecosystem services (carbon storage), land was classified into three categories based on the intensity of human utilization: low utilization, moderate utilization, and high utilization. Additionally, the study evaluated the recovery potential of the disturbed forest under both moderate and high utilization, after abandonment for 10 and 20 years. Tree diameter and height were measured for all trees whose diameter at breast height was greater than or equal to 10 cm. Our findings revealed that forest land with both high and moderate utilization regimes, and having no regulation, resulted in the decline of tree species richness, tree species diversity, and carbon storage. The magnitude of decrease was greater in high utilization compared to moderate utilization regimes. On the other hand, high values of biodiversity indices and carbon storage were observed in the low utilization regime. This study also demonstrated that fallow land that had been left undisturbed for more than 10 years, but had experienced both high and moderate utilization regimes, could reasonably recover carbon storage, and an acceptable level of tree species biodiversity can be achieved. However, there remains a significant difference when compared with the original level in the low utilization regime, suggesting that the Mayombe forest takes longer to recover. Based on the findings on tree biodiversity and carbon storage over the recovery trajectory, this study improves the understanding of the degraded forest restoration process within the Mayombe forest. It is therefore necessary to formulate new strategies to regulate forest land utilization within the Mayombe forest. This will ensure sustainability and availability of all ecosystem services this forest provides to a human population that strongly depends on it for their survival
Impact of Land Use Change on Tree Diversity and Aboveground Carbon Storage in the Mayombe Tropical Forest of the Democratic Republic of Congo
The Mayombe tropical forest has experienced dramatic changes over several decades due to human activities. However, the impact of these changes on tree biodiversity and ecosystem services has not been studied yet. Such a study could advance the current knowledge on tree biodiversity and carbon storage within the Mayombe forest, which is presently under high anthropogenic pressures. This information could benefit decision-makers to design and implement strategies for biodiversity conservation and sustainable natural resource utilization. As such, biodiversity surveys were conducted within the forest under different land utilization regimes. To evaluate the effect of human utilization on tree biodiversity and ecosystem services (carbon storage), land was classified into three categories based on the intensity of human utilization: low utilization, moderate utilization, and high utilization. Additionally, the study evaluated the recovery potential of the disturbed forest under both moderate and high utilization, after abandonment for 10 and 20 years. Tree diameter and height were measured for all trees whose diameter at breast height was greater than or equal to 10 cm. Our findings revealed that forest land with both high and moderate utilization regimes, and having no regulation, resulted in the decline of tree species richness, tree species diversity, and carbon storage. The magnitude of decrease was greater in high utilization compared to moderate utilization regimes. On the other hand, high values of biodiversity indices and carbon storage were observed in the low utilization regime. This study also demonstrated that fallow land that had been left undisturbed for more than 10 years, but had experienced both high and moderate utilization regimes, could reasonably recover carbon storage, and an acceptable level of tree species biodiversity can be achieved. However, there remains a significant difference when compared with the original level in the low utilization regime, suggesting that the Mayombe forest takes longer to recover. Based on the findings on tree biodiversity and carbon storage over the recovery trajectory, this study improves the understanding of the degraded forest restoration process within the Mayombe forest. It is therefore necessary to formulate new strategies to regulate forest land utilization within the Mayombe forest. This will ensure sustainability and availability of all ecosystem services this forest provides to a human population that strongly depends on it for their survival
Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve
Major land-use/land-cover change due to rapid urbanization has been known to increase the land-surface temperature around the world. Consequently, examining the variation of land-surface temperatures and mitigating the related impacts remain a challenge. The present study employed remote-sensing and geoinformational techniques to examine land-use/land-cover change and its effects on land-surface temperature variations in the villages within the Luki Biosphere Reserve, Democratic Republic of Congo. Land-use/land-cover change for the year 2038 was predicted by using the CA–Markov chain. Additionally, focus-group discussions (FGDs) with local communities from different villages were applied to better understand the impact of climate change, considering the increase of land-surface temperature. The results revealed major changes in land-use/land-cover in the four villages from 2002 to 2020, principally the expansion of fallow land and built-up areas, as well as the decline in forest land, and the complex of young secondary and degraded forest. There was an increase in mean LST values over all villages between 2002 and 2020. The highest value was observed in Tsumba kituti (25.12 °C), followed by Kisavu (24.87 °C), Kibuya (23.31 °C) and Kiobo (21.82 °C). Between 2002 and 2020, the mean LST of built-up areas increased from 23.18 to 25.12 °C, 21.55 to 23.38 °C, 21.4 to 25.78 °C and 22.31 to 25.62 °C in Tsumba kituti, Kiobo, Kisavu and Kibuya, respectively. Moreover, the mean LST of fallow land increased from 20.8 to 23.2 °C, 21.13 to 22.12 °C, 21.89 to 23.12 °C and 20.31 to 23.47 °C in Tsumba, Kiobo, Kibuya and Kisavu, respectively. This indicates that built-up and fallow land experienced the highest land-surface temperature compared to other land-use/land-cover categories. Meanwhile, the conversion of all land-use/land-cover categories into built-up areas in all the villages resulted in the increase of the land-surface temperature. FGDs results recognize the recurrent land-use/land-cover change as the major driver of the increase in LST (86%). However, it was predicted that farmland and built-up area will still increase within all the villages, while the forest land will decline. As for the complex of secondary and degraded forest, it will decrease in Tsumba kituti, while, in Kiobo and Kisavu, it is expected to increase. Through a combination of remote-sensing and primary data, this study provides accurate information that will benefit decision-makers to implement appropriate landscape-planning techniques to mitigate the effect of the increased land-surface temperature in the villages
Recommended from our members
Observation of hydrodynamic plasmons and energy waves in graphene
Thermally excited electrons and holes form a quantum-critical Dirac fluid in ultraclean graphene and their electrodynamic responses are described by a universal hydrodynamic theory. The hydrodynamic Dirac fluid can host intriguing collective excitations distinctively different from those in a Fermi liquid1-4. Here we report the observation of the hydrodynamic plasmon and energy wave in ultraclean graphene. We use the on-chip terahertz (THz) spectroscopy technique to measure the THz absorption spectra of a graphene microribbon as well as the propagation of the energy wave in graphene close to charge neutrality. We observe a prominent high-frequency hydrodynamic bipolar-plasmon resonance and a weaker low-frequency energy-wave resonance of the Dirac fluid in ultraclean graphene. The hydrodynamic bipolar plasmon is characterized by the antiphase oscillation of massless electrons and holes in graphene. The hydrodynamic energy wave is an electron-hole sound mode with both charge carriers oscillating in phase and moving together. The spatial-temporal imaging technique shows that the energy wave propagates at a characteristic speed of [Formula: see text] near the charge neutrality2-4. Our observations open new opportunities to explore collective hydrodynamic excitations in graphene systems
Distinct Electronic Structure for the Extreme Magnetoresistance in YSb.
An extreme magnetoresistance (XMR) has recently been observed in several nonmagnetic semimetals. Increasing experimental and theoretical evidence indicates that the XMR can be driven by either topological protection or electron-hole compensation. Here, by investigating the electronic structure of a XMR material, YSb, we present spectroscopic evidence for a special case which lacks topological protection and perfect electron-hole compensation. Further investigations reveal that a cooperative action of a substantial difference between electron and hole mobility and a moderate carrier compensation might contribute to the XMR in YSb