79 research outputs found

    Measurement of night sky brightness in southern Australia

    Full text link
    Night sky brightness is a major source of noise both for Cherenkov telescopes as well as for wide-angle Cherenkov detectors. Therefore, it is important to know the level of night sky brightness at potential sites for future experiments. The measurements of night sky brightness presented here were carried out at Fowler's Gap, a research station in New South Wales, Australia, which is a potential site for the proposed TenTen Cherenkov telescope system and the planned wide-angle Cherenkov detector system HiSCORE. A portable instrument was developed and measurements of the night sky brightness were taken in February and August 2010. Brightness levels were measured for a range of different sky regions and in various spectral bands. The night sky brightness in the relevant wavelength regime for photomultipliers was found to be at the same level as measured in similar campaigns at the established Cherenkov telescope sites of Khomas, Namibia, and at La Palma. The brightness of dark regions in the sky is about 2 x 10^12 photons/(s sr m^2) between 300 nm and 650 nm, and up to four times brighter in bright regions of the sky towards the galactic plane. The brightness in V band is 21.6 magnitudes per arcsec^2 in the dark regions. All brightness levels are averaged over the field of view of the instrument of about 1.3 x 10^(-3) sr. The spectrum of the night sky brightness was found to be dominated by longer wavelengths, which allows to apply filters to separate the night sky brightness from the blue Cherenkov light. The possible gain in the signal to noise ratio was found to be up to 1.2, assuming an ideal low-pass filter.Comment: 9 pages, 9 figures. Accepted for publication in Advances in Space Research as Proc to COSPAR 201

    First results from the AugerPrime Radio Detector

    Get PDF

    Update of the Offline Framework for AugerPrime

    Get PDF

    Event-by-event reconstruction of the shower maximum XmaxX_{\mathrm{max}} with the Surface Detector of the Pierre Auger Observatory using deep learning

    Get PDF

    Reconstruction of Events Recorded with the Water-Cherenkov and Scintillator Surface Detectors of the Pierre Auger Observatory

    Get PDF

    Status and performance of the underground muon detector of the Pierre Auger Observatory

    Get PDF

    The XY Scanner - A Versatile Method of the Absolute End-to-End Calibration of Fluorescence Detectors

    Get PDF

    Adjustments to Model Predictions of Depth of Shower Maximum and Signals at Ground Level using Hybrid Events of the Pierre Auger Observatory

    Get PDF
    We present a new method to explore simple ad-hoc adjustments to the predictions of hadronic interaction models to improve their consistency with observed two-dimensional distributions of the depth of shower maximum, Xmax_{max}, and signal at ground level, as a function of zenith angle. The method relies on the assumption that the mass composition is the same at all zenith angles, while the atmospheric shower development and attenuation depend on composition in a correlated way. In the present work, for each of the three leading LHC-tuned hadronic interaction models, we allow a global shift ΔXmax_{max} of the predicted shower maximum, which is the same for every mass and energy, and a rescaling RHad_{Had} of the hadronic component at ground level which depends on the zenith angle. We apply the analysis to 2297 events reconstructed by both fluorescence and surface detectors at the Pierre Auger Observatory with energies 1018.5^{18.5}−1019.0^{19.0} eV. Given the modeling assumptions made in this analysis, the best fit reaches its optimum value when shifting the Xmax_{max} predictions of hadronic interaction models to deeper values and increasing the hadronic signal at both extreme zenith angles. The resulting change in the composition towards heavier primaries alleviates the previously identified model deficit in the hadronic signal (commonly called the muon deficit), but does not remove it. Because of the size of the required corrections ΔXmax_{max} and RHad_{Had} and the large number of events in the sample, the statistical significance of the corrections is large, greater than 5σstat_{stat} even for the combination of experimental systematic shifts within 1σsys_{sys} that are the most favorable for the models

    A tau scenario application to a search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory

    Get PDF

    Performance of the 433 m surface array of the Pierre Auger Observatory

    Get PDF
    corecore