46 research outputs found

    Two Strategies to Enhance Ungual Drug Permeation from UV-cured Films: Incomplete Polymerisation to Increase Drug Release and Incorporation of Chemical Enhancers

    Get PDF
    UV-curable gels, which polymerise into long-lasting films upon exposure to UVA, have been identified as potential topical drug carriers for the treatment of nail diseases. Limitations of such films include incomplete drug release and low ungual drug permeation. The aim of the work herein was therefore to investigate two strategies, namely: (1) increasing drug release from the film, and (2) increasing nailplate permeability, with the ultimate goal of enhancing ungual drug permeation. To increase drug release via Strategy 1, a UV-LED lamp (whose emitted light was suboptimal for gel polymerisation) was used, and it was hypothesised that such a lamp would result in films that are less polymerised/cross-linked and where the drugs are less ‘trapped’. Indeed, the suboptimal lamp influenced polymerisation, such that the films were thinner, had lower glass transition temperatures and enabled a slightly greater (by 15%) drug release of one of the two drugs tested. However, the greater drug release had only a modest impact on ungual drug permeation. To evaluate Strategy 2, i.e. increase nailplate permeability, chemical ungual enhancers, 2-mercaptoethanol (ME), 2-methyl pyrrolidone (NMP), PEG 200 and water were incorporated within the UV-cured films. These chemicals caused increased ungual drug permeation, with ME showing the greatest (by 140%), and water showing the least (by 20%) increase in the amount of drug permeated by day 30. Surprisingly, these chemicals also caused increased drug release from the films, with ME once again having the greatest effect (by 51%) and water the least effect (by 12%). It seems that these chemicals were increasing ungual drug permeation via their influence on drug release (i.e. via their impact on the film) as well as via their influence on the nail itself. We conclude that, of the two strategies tested, the second strategy proved to be more successful at enhancing ungual drug permeation.Peer reviewe

    Topical formulations of miltefosine for cutaneous leishmaniasis in a BALB/c mouse model.

    Get PDF
    UNLABELLED: Cutaneous leishmaniasis (CL) is caused by several species of the protozoan parasite Leishmania and affects approximately 10 million people worldwide. Currently available drugs are not ideal due to high cost, toxicity, parenteral administration and suboptimal efficacy. Miltefosine is the only oral treatment (Impavido®) available to treat CL, given over a period of 28 days with common side effects such as vomiting and diarrhoea. OBJECTIVE: To explore the local application of miltefosine as a topical formulation to enhance activity and reduce the drug's adverse effects. METHODS: The antileishmanial activity of miltefosine was confirmed in vitro against several Leishmania species. The permeation of miltefosine, in different solvents and solvent combinations, through BALB/c mouse skin was evaluated in vitro using Franz diffusion cells. The topical formulations which enabled the highest drug permeation or skin disposition were tested in vivo in BALB/c mice infected with L. major. KEY FINDINGS: The overall permeation of miltefosine through skin was low regardless of the solvents used. This was reflected in limited antileishmanial activity of the drug formulations when applied topically in vivo. All topical formulations caused skin irritation. CONCLUSIONS: We conclude that miltefosine is not an appropriate candidate for the topical treatment of CL

    Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis.

    Get PDF
    Chitosan nanoparticles have gained attention as drug delivery systems (DDS) in the medical field as they are both biodegradable and biocompatible with reported antimicrobial and anti-leishmanial activities. We investigated the application of chitosan nanoparticles as a DDS for the treatment of cutaneous leishmaniasis (CL) by preparing two types of chitosan nanoparticles: positively charged with tripolyphosphate sodium (TPP) and negatively charged with dextran sulphate. Amphotericin B (AmB) was incorporated into these nanoparticles. Both types of AmB-loaded nanoparticles demonstrated in vitro activity against Leishmania major intracellular amastigotes, with similar activity to unencapsulated AmB, but with a significant lower toxicity to KB-cells and red blood cells. In murine models of CL caused by L. major, intravenous administration of AmB-loaded chitosan-TPP nanoparticles (Size = 69 ± 8 nm, Zeta potential = 25.5 ± 1 mV, 5 mg/kg/for 10 days on alternate days) showed a significantly higher efficacy than AmBisome® (10 mg/kg/for 10 days on alternate days) in terms of reduction of lesion size and parasite load (measured by both bioluminescence and qPCR). Poor drug permeation into and through mouse skin, using Franz diffusion cells, showed that AmB-loaded chitosan nanoparticles are not appropriate candidates for topical treatment of CL

    Sublingual immunisation with GBS serotype III capsular polysaccharide-tetanus toxoid conjugate vaccine induces systemic and mucosal antibody responses which are opsonophagocytic and inhibit GBS colonisation of vaginal epithelial cells

    Get PDF
    No vaccines are currently licensed against Group B streptococcus (GBS), an important cause of morbidity and mortality in babies and adults. Using a mouse model, and in vitro opsonophagocytosis and colonisation assays, we evaluated the potential of a sublingually-administered polysaccharide-conjugate vaccine against GBS serotype III. Sublingual immunisation of mice with 10 µg of GBS conjugate vaccine once a week for 5 weeks induced a substantial systemic IgG anti-polysaccharide response which was similar to the level induced by subcutaneous immunsation. In addition, sublingual immunisation also induced mucosal (IgA) antibody responses in the mouth, intestines and vagina. Immune sera and intestinal washes were functionally active at mediating killing of the homologous GBS serotype III in an opsonophagocytosis assay. In addition, intestinal and vaginal washes inhibited the colonisation of mouse vaginal epithelial cells by the vaccine homologous strain. These results suggest that, in addition to the induction of high levels of IgG antibodies that could be transduced from the immunised mother to the foetus to protect the newborn against GBS infection, sublingual immunisation can elicit a substantial mucosal antibody response which might play an important role in the prevention of GBS colonisation in immunised women, thereby eliminating the risk of GBS transmission from the mother to the baby during pregnancy or at birth

    An oral pH-responsive Streptococcus agalactiae vaccine formulation provides protective immunity to pathogen challenge in tilapia: A proof-of-concept study

    Get PDF
    Intensive tilapia farming has contributed significantly to food security as well as to the emergence of novel pathogens. This includes Streptococcus agalactiae or Group B Streptococcus (GBS) sequence type (ST) 283, which caused the first known outbreak of foodborne GBS illness in humans. An oral, easy-to-administer fish vaccine is needed to reduce losses in fish production and the risk of zoonotic transmission associated with GBS. We conducted a proof-of-concept study to develop an oral vaccine formulation that would only release its vaccine cargo at the site of action, i.e., in the fish gastrointestinal tract, and to evaluate whether it provided protection from experimental challenge with GBS. Formalin-inactivated S. agalactiae ST283, was entrapped within microparticles of Eudragit® E100 polymer using a double-emulsification solvent evaporation method. Exposure to an acidic medium simulating the environment in tilapia stomach showed that the size of the vaccine-loaded microparticles decreased rapidly, reflecting microparticle erosion and release of the vaccine cargo. In vivo studies in tilapia showed that oral administration of vaccine-loaded microparticles to fish provided significant protection from subsequent homologous pathogen challenge with GBS ST283 by immersion compared to the control groups which received blank microparticles or buffer, reducing mortality from 70% to 20%. The high efficacy shows the promise of the vaccine platform developed herein, which might be adapted for other bacterial pathogens and other fish species

    Activity of Chitosan and Its Derivatives against Leishmania major and Leishmania mexicana In Vitro.

    Get PDF
    There is an urgent need for safe, efficacious, affordable, and field-adapted drugs for the treatment of cutaneous leishmaniasis, which newly affects around 1.5 million people worldwide annually. Chitosan, a biodegradable cationic polysaccharide, has previously been reported to have antimicrobial, antileishmanial, and immunostimulatory activities. We investigated the in vitro activity of chitosan and several of its derivatives and showed that the pH of the culture medium plays a critical role in antileishmanial activity of chitosan against both extracellular promastigotes and intracellular amastigotes of Leishmania major and Leishmania mexicana Chitosan and its derivatives were approximately 7 to 20 times more active at pH 6.5 than at pH 7.5, with high-molecular-weight chitosan being the most potent. High-molecular-weight chitosan stimulated the production of nitric oxide and reactive oxygen species by uninfected and Leishmania-infected macrophages in a time- and dose-dependent manner at pH 6.5. Despite the in vitro activation of bone marrow macrophages by chitosan to produce nitric oxide and reactive oxygen species, we showed that the antileishmanial activity of chitosan was not mediated by these metabolites. Finally, we showed that rhodamine-labeled chitosan is taken up by pinocytosis and accumulates in the parasitophorous vacuole of Leishmania-infected macrophages

    Efficacy of Paromomycin-Chloroquine Combination Therapy in Experimental Cutaneous Leishmaniasis.

    Get PDF
    The 4-aminoquinoline chloroquine (CQ) is clinically used in combination with doxycycline to cure chronic Q fever, as it enhances the activity of the antibiotic against the causative bacterium Coxiella burnetii residing within macrophage phagolysosomes. As there is a similar cellular host-pathogen biology for Leishmania parasites, this study aimed to determine whether such an approach could also be the basis for a new, improved treatment for cutaneous leishmaniasis (CL). We have evaluated the in vitro and in vivo activities of combinations of CQ with the standard drugs paromomycin (PM), miltefosine, and amphotericin B against Leishmania major and Leishmania mexicana In 72-h intracellular antileishmanial assays, outcomes were variable for different drugs. Significantly, the addition of 10 μM CQ to PM reduced 50% effective concentrations (EC50s) by over 5-fold against L. major and against normally insensitive L. mexicana parasites. In murine models of L. major and L. mexicana CL, daily coadministration of 50 mg/kg of body weight PM and 25 mg/kg CQ for 10 days resulted in a significant reduction in lesion size but not in parasite load compared to those for mice given the same doses of PM alone. Overall, our data indicate that PM-CQ combination therapy is unlikely to be a potential candidate for further preclinical development

    Relation between Skin Pharmacokinetics and Efficacy in AmBisome Treatment of Murine Cutaneous Leishmaniasis.

    Get PDF
    AmBisome (LAmB), a liposomal formulation of amphotericin B (AmB), is a second-line treatment for the parasitic skin disease cutaneous leishmaniasis (CL). Little is known about its tissue distribution and pharmacodynamics to inform clinical use in CL. Here, we compared the skin pharmacokinetics of LAmB with those of the deoxycholate form of AmB (DAmB; trade name Fungizone) in murine models of Leishmania major CL. Drug levels at the target site (the localized lesion) 48 h after single intravenous (i.v.) dosing of the individual AmB formulations (1 mg/kg of body weight) were similar but were 3-fold higher for LAmB than for DAmB on day 10 after multiple administrations (1 mg/kg on days 0, 2, 4, 6, and 8). After single and multiple dosing, intralesional concentrations were 5- and 20-fold, respectively, higher than those in the healthy control skin of the same infected mice. We then evaluated how drug levels in the lesion after LAmB treatment relate to therapeutic outcomes. After five administrations of the drug at 0, 6.25, or 12.5 mg/kg (i.v.), there was a clear correlation between dose level, intralesional AmB concentration, and relative reduction in parasite load and lesion size (R2 values of >0.9). This study confirms the improved efficacy of the liposomal over the deoxycholate AmB formulation in experimental CL, which is related to higher intralesional drug accumulation

    Local Skin Inflammation in Cutaneous Leishmaniasis as a Source of Variable Pharmacokinetics and Therapeutic Efficacy of Liposomal Amphotericin B.

    Get PDF
    Disfiguring skin lesions caused by several species of the Leishmania parasite characterize cutaneous leishmaniasis (CL). Successful treatment of CL with intravenous (i.v.) liposomal amphotericin B (LAmB) relies on the presence of adequate antibiotic concentrations at the dermal site of infection within the inflamed skin. Here, we have investigated the impact of the local skin inflammation on the pharmacokinetics (PK) and efficacy of LAmB in two murine models of localized CL (Leishmania major and Leishmania mexicana) at three different stages of disease (papule, initial nodule, and established nodule). Twenty-four hours after the administration of one 25 mg/kg of body weight LAmB (i.v.) dose to infected BALB/c mice (n = 5), drug accumulation in the skin was found to be dependent on the causative parasite species (L. major > L. mexicana) and the disease stage (papule > initial nodule > established nodule > healthy skin). Elevated tissue drug levels were associated with increased vascular permeability (Evans blue assay) and macrophage infiltration (histomorphometry) in the infected skin, two pathophysiological parameters linked to tissue inflammation. After identical treatment of CL in the two models with 5 × 25 mg/kg LAmB (i.v.), intralesional drug concentrations and reductions in lesion size and parasite load (quantitative PCR [qPCR]) were all ≥2-fold higher for L. major than for L. mexicana In conclusion, drug penetration of LAmB into CL skin lesions could depend on the disease stage and the causative Leishmania species due to the influence of local tissue inflammation

    Printing Drugs onto Nails for Effective Treatment of Onychomycosis

    Get PDF
    Inkjet printing (IJP) is an emerging technology for the precision dosing of medicines. We report, for the first time, the printing of the antifungal drug terbinafine hydrochloride directly onto nails for the treatment of onychomycosis. A commercial cosmetic nail printer was modified by removing the ink from the cartridge and replacing it with an in-house prepared drug-loaded ink. The drug-loaded ink was designed so that it was comparable to the commercial ink for key printability properties. Linear drug dosing was shown by changing the lightness of the colour selected for printing (R2 = 0.977) and by printing multiple times (R2 = 0.989). The drug loads were measured for heart (271 µg), world (205 µg) and football (133 µg) shapes. A disc diffusion assay against Trpytophan rubrum showed inhibition of fungal growth with printed-on discs. In vitro testing with human nails showed substantial inhibition with printed-on nails. Hence, this is the first study to demonstrate the ability of a nail printer for drug delivery, thereby confirming its potential for onychomycosis treatment
    corecore