3,876 research outputs found

    Analysis Of The Girth For Regular Bi-partite Graphs With Degree 3

    Full text link
    The goal of this paper is to derive the detailed description of the Enumeration Based Search Algorithm from the high level description provided in [16], analyze the experimental results from our implementation of the Enumeration Based Search Algorithm for finding a regular bi-partite graph of degree 3, and compare it with known results from the available literature. We show that the values of m for a given girth g for (m, 3) BTUs are within the known mathematical bounds for regular bi-partitite graphs from the available literature

    Wavemoth -- Fast spherical harmonic transforms by butterfly matrix compression

    Full text link
    We present Wavemoth, an experimental open source code for computing scalar spherical harmonic transforms (SHTs). Such transforms are ubiquitous in astronomical data analysis. Our code performs substantially better than existing publicly available codes due to improvements on two fronts. First, the computational core is made more efficient by using small amounts of precomputed data, as well as paying attention to CPU instruction pipelining and cache usage. Second, Wavemoth makes use of a fast and numerically stable algorithm based on compressing a set of linear operators in a precomputation step. The resulting SHT scales as O(L^2 (log L)^2) for the resolution range of practical interest, where L denotes the spherical harmonic truncation degree. For low and medium-range resolutions, Wavemoth tends to be twice as fast as libpsht, which is the current state of the art implementation for the HEALPix grid. At the resolution of the Planck experiment, L ~ 4000, Wavemoth is between three and six times faster than libpsht, depending on the computer architecture and the required precision. Due to the experimental nature of the project, only spherical harmonic synthesis is currently supported, although adding support or spherical harmonic analysis should be trivial.Comment: 13 pages, 6 figures, accepted by ApJ

    Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars II. s-process nucleosynthesis during the core He flash

    Full text link
    Models of primordial and hyper-metal-poor stars with masses similar to the Sun experience an ingestion of protons into the hot core during the core helium flash phase at the end of their red giant branch evolution. This produces a concurrent secondary flash powered by hydrogen burning that gives rise to further nucleosynthesis in the core. We perform post-process nucleosynthesis calculations on a one-dimensional stellar evolution calculation of a star of 1 solar mass and metallicity [Fe/H] = -6.5 that suffers a proton ingestion episode. Our network includes 320 nuclear species and 2,366 reactions and treats mixing and burning simultaneously. The mixing and burning of protons into the hot convective core leads to the production of 13C, which then burns via the 13C(alpha,n)16O reaction releasing a large number of free neutrons. During the first two years of neutron production the neutron poison 14N abundance is low, allowing the prodigious production of heavy elements such as strontium, barium, and lead via slow neutron captures (the s process). These nucleosynthetic products are later mixed to the stellar surface and ejected via stellar winds. We compare our results with observations of the hyper-metal-poor halo star HE 1327-2326, which shows a strong Sr overabundance. Our model provides the possibility of self-consistently explaining the Sr overabundance in HE 1327-2326 together with its C, N, and O overabundances (all within a factor of ~4) if the material were heavily diluted, for example, via mass transfer in a wide binary system. The model produces at least 18 times too much Ba than observed, but this may be within the large modelling uncertainties. In this scenario, binary systems of low mass must have formed in the early Universe. If true then this puts constraints on the primordial initial mass function.Comment: Accepted for publication on Astronomy & Astrophysics Letter

    Evolution and CNO yields of Z=10^-5 stars and possible effects on CEMP production

    Get PDF
    Our main goals are to get a deeper insight into the evolution and final fates of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to investigate their C, N, and O yields. Using the Monash University Stellar Evolution code we computed and analysed the evolution of stars of metallicity Z = 10^-5 and masses between 4 and 9 M_sun, from their main sequence until the late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Our model stars experience a strong C, N, and O envelope enrichment either due to the second dredge-up, the dredge-out phenomenon, or the third dredge-up early during the TP-(S)AGB phase. Their late evolution is therefore similar to that of higher metallicity objects. When using a standard prescription for the mass loss rates during the TP-(S)AGB phase, the computed stars lose most of their envelopes before their cores reach the Chandrasekhar mass, so our standard models do not predict the occurrence of SNI1/2 for Z = 10^-5 stars. However, we find that the reduction of only one order of magnitude in the mass-loss rates, which are particularly uncertain at this metallicity, would prevent the complete ejection of the envelope, allowing the stars to either explode as an SNI1/2 or become an electron-capture SN. Our calculations stop due to an instability near the base of the convective envelope that hampers further convergence and leaves remnant envelope masses between 0.25 M_sun for our 4 M_sun model and 1.5 M_sun for our 9 M_sun model. We present two sets of C, N, and O yields derived from our full calculations and computed under two different assumptions, namely, that the instability causes a practically instant loss of the remnant envelope or that the stars recover and proceed with further thermal pulses. Our results have implications for the early chemical evolution of the Universe.Comment: 12 pages, 13 figures, accepted for publication in A&

    Development of a Large-Area Aerogel Cherenkov Counter Onboard BESS

    Get PDF
    This paper describes the development of a threshold type aerogel Cherenkov counter with a large sensitive area of 0.6 m2^2 to be carried onboard the BESS rigidity spectrometer to detect cosmic-ray antiprotons. The design incorporates a large diffusion box containing 46 finemesh photomultipliers, with special attention being paid to achieving good performance under a magnetic field and providing sufficient endurance while minimizing material usage. The refractive index of the aerogel was chosen to be 1.03. By utilizing the muons and protons accumulated during the cosmic-ray measurements at sea level, a rejection factor of 104^4 was obtained against muons with β1\beta \approx 1, while keeping 97% efficiency for protons below the threshold.Comment: 13 pages, LaTex, 9 eps figures included, submitted to NIM

    Microstructural Change and Mechanical Property of Neutron Irradiated Ti-Ni Shape Memory Alloy

    Get PDF
    Microstructural change and mechanical property of Ti-Ni shape memory alloy after neutron irradiation have been studied. The neutron doses were from 1.4×10^ to 1.2×10^n/cm^2, and the irradiation temperature was under 423K. A halo ring was observed after the irradiation of 1.2×10^n/cm^2, which means that amorphous phase was induced by the neutron irradiation. In stress-strain curve, the critical point (σ_M) increased as the dose increased. At the highest dose, the stress-strain curve lost pseudoelasticity. These results indicate that such mechanical properties strongly depend on the amorphous formation

    Electron-induced proton knockout from neutron rich nuclei

    Full text link
    We study the evolution of the \eep cross section on nuclei with increasing asymmetry between the number of neutrons and protons. The calculations are done within the framework of the nonrelativistic and relativistic distorted-wave impulse approximation. In the nonrelativistic model phenomenological Woods-Saxon and Hartree-Fock wave functions are used for the proton bound-state wave functions, in the relativistic model the wave functions are solutions of Dirac-Hartree equations. The models are first tested against experimental data on 40^{40}Ca and 48^{48}Ca nuclei, and then they are applied to a set of spherical calcium isotopes.Comment: 5 pages, 2 figures. contribution to the XIX International School on Nuclear Physics, Neutron Physics and Applications, Varna (Bulgaria) September 19-25, 201

    Explosions inside Ejecta and Most Luminous Supernovae

    Full text link
    The extremely luminous supernova SN2006gy is explained in the same way as other SNIIn events: light is produced by a radiative shock propagating in a dense circumstellar envelope formed by a previous weak explosion. The problems in the theory and observations of multiple-explosion SNe IIn are briefly reviewed.Comment: 9 pages, 6 figures, LateX aipproc.cls. A bit more details and color added to Fig.3. The 10th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG07), Sapporo, Japan, December 200
    corecore