3,942 research outputs found
Analysis Of The Girth For Regular Bi-partite Graphs With Degree 3
The goal of this paper is to derive the detailed description of the
Enumeration Based Search Algorithm from the high level description provided in
[16], analyze the experimental results from our implementation of the
Enumeration Based Search Algorithm for finding a regular bi-partite graph of
degree 3, and compare it with known results from the available literature. We
show that the values of m for a given girth g for (m, 3) BTUs are within the
known mathematical bounds for regular bi-partitite graphs from the available
literature
Wavemoth -- Fast spherical harmonic transforms by butterfly matrix compression
We present Wavemoth, an experimental open source code for computing scalar
spherical harmonic transforms (SHTs). Such transforms are ubiquitous in
astronomical data analysis. Our code performs substantially better than
existing publicly available codes due to improvements on two fronts. First, the
computational core is made more efficient by using small amounts of precomputed
data, as well as paying attention to CPU instruction pipelining and cache
usage. Second, Wavemoth makes use of a fast and numerically stable algorithm
based on compressing a set of linear operators in a precomputation step. The
resulting SHT scales as O(L^2 (log L)^2) for the resolution range of practical
interest, where L denotes the spherical harmonic truncation degree. For low and
medium-range resolutions, Wavemoth tends to be twice as fast as libpsht, which
is the current state of the art implementation for the HEALPix grid. At the
resolution of the Planck experiment, L ~ 4000, Wavemoth is between three and
six times faster than libpsht, depending on the computer architecture and the
required precision. Due to the experimental nature of the project, only
spherical harmonic synthesis is currently supported, although adding support or
spherical harmonic analysis should be trivial.Comment: 13 pages, 6 figures, accepted by ApJ
Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars II. s-process nucleosynthesis during the core He flash
Models of primordial and hyper-metal-poor stars with masses similar to the
Sun experience an ingestion of protons into the hot core during the core helium
flash phase at the end of their red giant branch evolution. This produces a
concurrent secondary flash powered by hydrogen burning that gives rise to
further nucleosynthesis in the core. We perform post-process nucleosynthesis
calculations on a one-dimensional stellar evolution calculation of a star of 1
solar mass and metallicity [Fe/H] = -6.5 that suffers a proton ingestion
episode. Our network includes 320 nuclear species and 2,366 reactions and
treats mixing and burning simultaneously. The mixing and burning of protons
into the hot convective core leads to the production of 13C, which then burns
via the 13C(alpha,n)16O reaction releasing a large number of free neutrons.
During the first two years of neutron production the neutron poison 14N
abundance is low, allowing the prodigious production of heavy elements such as
strontium, barium, and lead via slow neutron captures (the s process). These
nucleosynthetic products are later mixed to the stellar surface and ejected via
stellar winds. We compare our results with observations of the hyper-metal-poor
halo star HE 1327-2326, which shows a strong Sr overabundance. Our model
provides the possibility of self-consistently explaining the Sr overabundance
in HE 1327-2326 together with its C, N, and O overabundances (all within a
factor of ~4) if the material were heavily diluted, for example, via mass
transfer in a wide binary system. The model produces at least 18 times too much
Ba than observed, but this may be within the large modelling uncertainties. In
this scenario, binary systems of low mass must have formed in the early
Universe. If true then this puts constraints on the primordial initial mass
function.Comment: Accepted for publication on Astronomy & Astrophysics Letter
Evolution and CNO yields of Z=10^-5 stars and possible effects on CEMP production
Our main goals are to get a deeper insight into the evolution and final fates
of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to
investigate their C, N, and O yields. Using the Monash University Stellar
Evolution code we computed and analysed the evolution of stars of metallicity Z
= 10^-5 and masses between 4 and 9 M_sun, from their main sequence until the
late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Our
model stars experience a strong C, N, and O envelope enrichment either due to
the second dredge-up, the dredge-out phenomenon, or the third dredge-up early
during the TP-(S)AGB phase. Their late evolution is therefore similar to that
of higher metallicity objects. When using a standard prescription for the mass
loss rates during the TP-(S)AGB phase, the computed stars lose most of their
envelopes before their cores reach the Chandrasekhar mass, so our standard
models do not predict the occurrence of SNI1/2 for Z = 10^-5 stars. However, we
find that the reduction of only one order of magnitude in the mass-loss rates,
which are particularly uncertain at this metallicity, would prevent the
complete ejection of the envelope, allowing the stars to either explode as an
SNI1/2 or become an electron-capture SN. Our calculations stop due to an
instability near the base of the convective envelope that hampers further
convergence and leaves remnant envelope masses between 0.25 M_sun for our 4
M_sun model and 1.5 M_sun for our 9 M_sun model. We present two sets of C, N,
and O yields derived from our full calculations and computed under two
different assumptions, namely, that the instability causes a practically
instant loss of the remnant envelope or that the stars recover and proceed with
further thermal pulses. Our results have implications for the early chemical
evolution of the Universe.Comment: 12 pages, 13 figures, accepted for publication in A&
Development of a Large-Area Aerogel Cherenkov Counter Onboard BESS
This paper describes the development of a threshold type aerogel Cherenkov
counter with a large sensitive area of 0.6 m to be carried onboard the BESS
rigidity spectrometer to detect cosmic-ray antiprotons. The design incorporates
a large diffusion box containing 46 finemesh photomultipliers, with special
attention being paid to achieving good performance under a magnetic field and
providing sufficient endurance while minimizing material usage. The refractive
index of the aerogel was chosen to be 1.03. By utilizing the muons and protons
accumulated during the cosmic-ray measurements at sea level, a rejection factor
of 10 was obtained against muons with , while keeping 97%
efficiency for protons below the threshold.Comment: 13 pages, LaTex, 9 eps figures included, submitted to NIM
Microstructural Change and Mechanical Property of Neutron Irradiated Ti-Ni Shape Memory Alloy
Microstructural change and mechanical property of Ti-Ni shape memory alloy after neutron irradiation have been studied. The neutron doses were from 1.4×10^ to 1.2×10^n/cm^2, and the irradiation temperature was under 423K. A halo ring was observed after the irradiation of 1.2×10^n/cm^2, which means that amorphous phase was induced by the neutron irradiation. In stress-strain curve, the critical point (σ_M) increased as the dose increased. At the highest dose, the stress-strain curve lost pseudoelasticity. These results indicate that such mechanical properties strongly depend on the amorphous formation
Electron-induced proton knockout from neutron rich nuclei
We study the evolution of the \eep cross section on nuclei with increasing
asymmetry between the number of neutrons and protons. The calculations are done
within the framework of the nonrelativistic and relativistic distorted-wave
impulse approximation. In the nonrelativistic model phenomenological
Woods-Saxon and Hartree-Fock wave functions are used for the proton bound-state
wave functions, in the relativistic model the wave functions are solutions of
Dirac-Hartree equations. The models are first tested against experimental data
on Ca and Ca nuclei, and then they are applied to a set of
spherical calcium isotopes.Comment: 5 pages, 2 figures. contribution to the XIX International School on
Nuclear Physics, Neutron Physics and Applications, Varna (Bulgaria) September
19-25, 201
Explosions inside Ejecta and Most Luminous Supernovae
The extremely luminous supernova SN2006gy is explained in the same way as
other SNIIn events: light is produced by a radiative shock propagating in a
dense circumstellar envelope formed by a previous weak explosion. The problems
in the theory and observations of multiple-explosion SNe IIn are briefly
reviewed.Comment: 9 pages, 6 figures, LateX aipproc.cls. A bit more details and color
added to Fig.3. The 10th International Symposium on Origin of Matter and
Evolution of Galaxies (OMEG07), Sapporo, Japan, December 200
- …