582 research outputs found

    Calculation of surface temperature and surface fluxes in the GLAS GOM

    Get PDF
    Because the GLAS model's surface fluxes of sensible and latent heat exhibit strong 2 delta t oscillations at the individual grid points as well as in the zonal hemispheric averages and because a basic weakness of the GLAS model lower evaporation over oceans and higher evaporation over land in a typical monthly simulation, the GLAS model PBL parameterization was changed to calculate the mixed layer temperature gradient by solution of a quadratic equation for a stable PBL and by a curve fit relation for an unstable PBL. The new fluxes without any 2 delta t oscillation. Also, the geographical distributions of the surface fluxes are improved. The parameterization presented is incorporated into the new GLAS climate model. Some results which compare the evaporation over land and ocean between old and new calculations are appended

    A study of the influence of soil moisture on future precipitation

    Get PDF
    Forty years of precipitation and surface temperature data observed over 261 Local Climatic Data (LCD) stations in the Continental United States was utilized in a ground hydrology model to yield soil moisture time series at each station. A month-by-month soil moisture dataset was constructed for each year. The monthly precipitation was correlated with antecedent monthly precipitation, soil moisture and vapotranspiration separately. The maximum positive correlation is found to be in the drought prone western Great Plains region during the latter part of summer. There is also some negative correlation in coastal regions. The correlations between soil moisture and precipitation particularly in the latter part of summer, suggest that large scale droughts over extended periods may be partially maintained by the feedback influence of soil moisture on rainfall. In many other regions the lack of positive correlation shows that there is no simple answer such as higher land-surface evapotranspiration leads to more precipitation, and points out the complexity of the influence of soil moisture on the ensuring precipitation

    A review of recent research on improvement of physical parameterizations in the GLA GCM

    Get PDF
    A systematic assessment of the effect of a series of improvements in physical parameterizations of the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) are summarized. The implementation of the Simple Biosphere Model (SiB) in the GCM is followed by a comparison of SiB GCM simulations with that of the earlier slab soil hydrology GCM (SSH-GCM) simulations. In the Sahelian context, the biogeophysical component of desertification was analyzed for SiB-GCM simulations. Cumulus parameterization is found to be the primary determinant of the organization of the simulated tropical rainfall of the GLA GCM using Arakawa-Schubert cumulus parameterization. A comparison of model simulations with station data revealed excessive shortwave radiation accompanied by excessive drying and heating to the land. The perpetual July simulations with and without interactive soil moisture shows that 30 to 40 day oscillations may be a natural mode of the simulated earth atmosphere system

    Winter and summer simulations with the GLAS climate model

    Get PDF
    The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations

    Soil Surface Runoff Scheme for Improving Land-Hydrology and Surface Fluxes in Simple SiB (SSiB)

    Get PDF
    Evapotranspiration on land is hard to measure and difficult to simulate. On the scale of a GCM grid, there is large subgrid-scale variability of orography, soil moisture, and vegetation. Our hope is to be able to tune the biophysical constants of vegetation and soil parameters to get the most realistic space-averaged diurnal cycle of evaporation and its climatology. Field experiments such as First ISLSCP Field Experiment (FIFE), Boreal Ecosystem-Atmosphere Study (BOREAS), and LBA help a great deal in improving our evapotranspiration schemes. However, these improvements have to be matched with, and coupled to, consistent improvement in land-hydrology; otherwise, the runoff problems will intrinsically reflect on the soil moisture and evapotranspiration errors. Indeed, a realistic runoff simulation also ensures a reasonable evapotranspiration simulation provided the precipitation forcing is reliable. We have been working on all of the above problems to improve the simulated hydrologic cycle. Through our participation in the evaluation and intercomparison of land-models under the behest of Global Soil Wetness Project (GSWP), we identified a few problems with Simple SiB (SSIB; Xue et al., 1991) hydrology in regions of significant snowmelt. Sud and Mocko (1999) show that inclusion of a separate snowpack model, with its own energy budget and fluxes with the atmosphere aloft and soil beneath, helps to ameliorate some of the deficiencies of delayed snowmelt and excessive spring season runoff. Thus, much more realistic timing of melt water generation was simulated with the new snowpack model in the subsequent GSWP re-evaluations using 2 years of ISLSCP Initiative I forcing data for 1987 and 1988. However, we noted an overcorrection of the low meltwater infiltration of SSiB. While the improvement in snowmelt timing was found everywhere, the snowmelt infiltration has became excessive in some regions, e.g., Lena river basin. This leads to much reduced runoff in many basins as compared to observations. We believe this is a consequence of neglect of the influence of subgrid-scale variations in orography that affects the production of surface runoff

    Snowmelt and Infiltration Deficiencies of SSiB and Their Resolution with a New Snow-Physics Scheme

    Get PDF
    A two-year 1987-1988 integration of SSiB forced with ISLSCP Initiative I surface data (as part of the Global Soil Wetness Project, GSWP, evaluation and intercomparison) produced generally realistic land surface fluxes and hydrology. Nevertheless, the evaluation also helped to identify some of the deficiencies of the current version of the Simplified Simple Biosphere (SSiB) model. The simulated snowmelt was delayed in most regions, along with excessive runoff and lack of an spring soil moisture recharge. The SSIB model had previously been noted to have a problem producing accurate soil moisture as compared to observations in the Russian snowmelt region. Similarly, various GSWP implementations of SSIB found deficiencies in this region of the simulated soil moisture and runoff as compared to other non-SSiB land-surface models (LSMs). The origin of these deficiencies was: 1) excessive cooling of the snow and ground, and 2) deep frozen soil disallowing snowmelt infiltration. The problem was most severe in regions that experience very cold winters. In SSiB, snow was treated as a unified layer with the first soil layer, causing soil and snow to cool together in the winter months, as opposed to snow cover acting as an insulator. In the spring season, a large amount of heat was required to thaw a hard frozen snow plus deep soil layers, delaying snowmelt and causing meltwater to become runoff over the frozen soil rather than infiltrate into it

    Sensitivity of Boreal-Summer Circulation and Precipitation to Atmospheric Aerosols in Selected Regions

    Get PDF
    Aerosol perturbations over selected land regions are imposed in Version-4 of the Goddard Earth Observing System (GEOS-4) general circulation model (GCM) to assess the influence of increasing aerosol concentrations on regional circulation patterns and precipitation in four selected regions: India, Africa, and North and South America. Part 1 of this paper addresses the responses to aerosol perturbations in India and Africa. This paper presents the same for aerosol perturbations over the Americas. GEOS-4 is forced with prescribed aerosols based on climatological data, which interact with clouds using a prognostic scheme for cloud microphysics including aerosol nucleation of water and ice cloud hydrometeors. In clear-sky conditions the aerosols interact with radiation. Thus the model includes comprehensive physics describing the aerosol direct and indirect effects on climate (hereafter ADE and AIE respectively). Each simulation is started from analyzed initial conditions for 1 May and was integrated through June-July-August of each of the six years: 1982 1987 to provide a 6-ensemble set. Results are presented for the difference between simulations with double the climatological aerosol concentration and one-half the climatological aerosol concentration for three experiments: two where the ADE and AIE are applied separately and one in which both the ADE and AIE are applied. The ADE and AIE both yield reductions in net radiation at the top of the atmosphere and surface while the direct absorption of shortwave radiation contributes a net radiative heating in the atmosphere. A large net heating of the atmosphere is also apparent over the subtropical North Atlantic Ocean that is attributable to the large aerosol perturbation imposed over Africa. This atmospheric warming and the depression of the surface pressure over North America contribute to a northward shift of the inter-Tropical Convergence Zone over northern America, an increase in precipitation over Central America and the Caribbean, and an enhancement of convergence in the North American monsoon region

    Dynamic Parameter Optimization of an Automobile A/C Compressor Using Taguchi Method

    Get PDF

    Cronobacter Sakazakii Bacteremia in a 76-year-old Woman: A Case Report

    Get PDF
    Cronobacter sakazakii, commonly found in contaminated infant formula and thereby causes infantile bacteremia, is rarely associated with adult bacteremia. We present the tenth case of C. sakazakii bacteremia in adults. The patient is a 76-year-old woman who resides in a skilled nursing facility and presents with risk factors including bullous pemphigoid, Type II diabetes mellitus, hypertension, hyperlipidemia, chronic kidney disease, and anemia. The therapy was started with intravenous ciprofloxacin and vancomycinempirically. After consultation with an Infectious Diseases specialist, ciprofloxacin and vancomycin was replaced with meropenem based on the patient’s extensive bullous lesions, history of ESBL infections, and possible pneumonia. Later, the therapy was de-escalated to intravenous ceftriaxone and vancomycin after culture and sensitivity testing were available and clinical signs of improvements were evident. She was sent back to her skilled nursing but was re-admitted 10-days later. She was placed on dialysis for altered mental status secondary to acute renal failure. Blood and urine cultures were repeated and had no evidence of bacterial growth
    • …
    corecore