6 research outputs found
Detection of Active Caspase-3 in Mouse Models of Stroke and Alzheimer\u27s Disease with a Novel Dual Positron Emission Tomography/Fluorescent Tracer [68Ga]Ga-TC3-OGDOTA.
Apoptosis is a feature of stroke and Alzheimer\u27s disease (AD), yet there is no accepted method to detect or follow apoptosis in the brain in vivo. We developed a bifunctional tracer [Ga-68]Ga-TC3-OGDOTA containing a cell-penetrating peptide separated from fluorescent Oregon Green and Ga-68-bound labels by the caspase-3 recognition peptide DEVD. We hypothesized that this design would allow [Ga-68]Ga-TC3-OGDOTA to accumulate in apoptotic cells. In vitro, Ga-TC3-OGDOTA labeled apoptotic neurons following exposure to camptothecin, oxygen-glucose deprivation, and -amyloid oligomers. In vivo, PET showed accumulation of [Ga-68]Ga-TC3-OGDOTA in the brain of mouse models of stroke or AD. Optical clearing revealed colocalization of [Ga-68]Ga-TC3-OGDOTA and cleaved caspase-3 in brain cells. In stroke, [Ga-68]Ga-TC3-OGDOTA accumulated in neurons in the penumbra area, whereas in AD mice [Ga-68]Ga-TC3-OGDOTA was found in single cells in the forebrain and diffusely around amyloid plaques. In summary, this bifunctional tracer is selectively associated with apoptotic cells in vitro and in vivo in brain disease models and represents a novel tool for apoptosis detection that can be used in neurodegenerative diseases
Detection of active caspase-3 in mouse models of stroke and Alzheimer\u27s disease with a novel dual positron emission tomography/fluorescent tracer [ \u3csup\u3e68\u3c/sup\u3e Ga]Ga-TC3-OGDOTA
© 2019 Valeriy G. Ostapchenko et al. Apoptosis is a feature of stroke and Alzheimer\u27s disease (AD), yet there is no accepted method to detect or follow apoptosis in the brain in vivo. We developed a bifunctional tracer [ 68 Ga]Ga-TC3-OGDOTA containing a cell-penetrating peptide separated from fluorescent Oregon Green and 68 Ga-bound labels by the caspase-3 recognition peptide DEVD. We hypothesized that this design would allow [ 68 Ga]Ga-TC3-OGDOTA to accumulate in apoptotic cells. In vitro, Ga-TC3-OGDOTA labeled apoptotic neurons following exposure to camptothecin, oxygen-glucose deprivation, and β-amyloid oligomers. In vivo, PET showed accumulation of [ 68 Ga]Ga-TC3-OGDOTA in the brain of mouse models of stroke or AD. Optical clearing revealed colocalization of [ 68 Ga]Ga-TC3-OGDOTA and cleaved caspase-3 in brain cells. In stroke, [ 68 Ga]Ga-TC3-OGDOTA accumulated in neurons in the penumbra area, whereas in AD mice [ 68 Ga]Ga-TC3-OGDOTA was found in single cells in the forebrain and diffusely around amyloid plaques. In summary, this bifunctional tracer is selectively associated with apoptotic cells in vitro and in vivo in brain disease models and represents a novel tool for apoptosis detection that can be used in neurodegenerative diseases
Detection of Active Caspase-3 in Mouse Models of Stroke and Alzheimer’s Disease with a Novel Dual Positron Emission Tomography/Fluorescent Tracer [68Ga]Ga-TC3-OGDOTA
Apoptosis is a feature of stroke and Alzheimer’s disease (AD), yet there is no accepted method to detect or follow apoptosis in the brain in vivo. We developed a bifunctional tracer [68Ga]Ga-TC3-OGDOTA containing a cell-penetrating peptide separated from fluorescent Oregon Green and 68Ga-bound labels by the caspase-3 recognition peptide DEVD. We hypothesized that this design would allow [68Ga]Ga-TC3-OGDOTA to accumulate in apoptotic cells. In vitro, Ga-TC3-OGDOTA labeled apoptotic neurons following exposure to camptothecin, oxygen-glucose deprivation, and β-amyloid oligomers. In vivo, PET showed accumulation of [68Ga]Ga-TC3-OGDOTA in the brain of mouse models of stroke or AD. Optical clearing revealed colocalization of [68Ga]Ga-TC3-OGDOTA and cleaved caspase-3 in brain cells. In stroke, [68Ga]Ga-TC3-OGDOTA accumulated in neurons in the penumbra area, whereas in AD mice [68Ga]Ga-TC3-OGDOTA was found in single cells in the forebrain and diffusely around amyloid plaques. In summary, this bifunctional tracer is selectively associated with apoptotic cells in vitro and in vivo in brain disease models and represents a novel tool for apoptosis detection that can be used in neurodegenerative diseases