60 research outputs found

    Catalytic CO Oxidation on Nanoscale Pt Facets: Effect of Inter-Facet CO Diffusion on Bifurcation and Fluctuation Behavior

    Get PDF
    We present lattice-gas modeling of the steady-state behavior in CO oxidation on the facets of nanoscale metal clusters, with coupling via inter-facet CO diffusion. The model incorporates the key aspects of reaction process, such as rapid CO mobility within each facet, and strong nearest-neighbor repulsion between adsorbed O. The former justifies our use a "hybrid" simulation approach treating the CO coverage as a mean-field parameter. For an isolated facet, there is one bistable region where the system can exist in either a reactive state (with high oxygen coverage) or a (nearly CO-poisoned) inactive state. Diffusion between two facets is shown to induce complex multistability in the steady states of the system. The bifurcation diagram exhibits two regions with bistabilities due to the difference between adsorption properties of the facets. We explore the role of enhanced fluctuations in the proximity of a cusp bifurcation point associated with one facet in producing transitions between stable states on that facet, as well as their influence on fluctuations on the other facet. The results are expected to shed more light on the reaction kinetics for supported catalysts.Comment: 22 pages, RevTeX, to appear in Phys. Rev. E, 6 figures (eps format) are available at http://www.physik.tu-muenchen.de/~natali

    Adsorption of Reactive Particles on a Random Catalytic Chain: An Exact Solution

    Full text link
    We study equilibrium properties of a catalytically-activated annihilation A+A→0A + A \to 0 reaction taking place on a one-dimensional chain of length NN (N→∞N \to \infty) in which some segments (placed at random, with mean concentration pp) possess special, catalytic properties. Annihilation reaction takes place, as soon as any two AA particles land onto two vacant sites at the extremities of the catalytic segment, or when any AA particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another AA particle. Non-catalytic segments are inert with respect to reaction and here two adsorbed AA particles harmlessly coexist. For both "annealed" and "quenched" disorder in placement of the catalytic segments, we calculate exactly the disorder-average pressure per site. Explicit asymptotic formulae for the particle mean density and the compressibility are also presented.Comment: AMSTeX, 27 pages + 4 figure

    Synthesis and characterization of Pt/CeOx systems for catalytic CO oxidation reaction

    No full text
    Four different ceria supported catalyst were prepared by impregnation method with Pt(NO3\text{}_{3})2\text{}_{2} solution. The two supports are commercially available (MaTeck) and the other two were prepared by precipitation and microwave assisted hydrothermal method (MAH) respectively. The phase composition and average crystallite size of the catalysts were characterised with XRD technique. Finally the catalytic activity in CO oxidation reaction were determined in plug flow reactor in temperature range 300-900 K with 1 K resolution. The catalysts obtained in both precipitation and MAH methods exhibit catalytic activity at room temperature whereas catalysts obtained on MaTeck supports are not active at those conditions. In turn, catalysts based on MaTeck support are more active in temperature range 420-700 K. The different activities are attributed to difference in average crystallite sizes and in support morphology

    Field Ion and Field Desorption Microscopy: Principles and Applications

    No full text
    • …
    corecore