15 research outputs found

    Selective Cholinergic Depletion in Medial Septum Leads to Impaired Long Term Potentiation and Glutamatergic Synaptic Currents in the Hippocampus

    Get PDF
    Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning

    Significant Quantitative Differences in Orexin Neuronal Activation After Pain Assessments in an Animal Model of Sickle Cell Disease

    No full text
    Sickle cell disease is a hemoglobinopathy that causes sickling of red blood cells, resulting in vessel blockage, stroke, anemia, inflammation, and extreme pain. The development and treatment of pain, in particular, neuropathic pain in sickle cell disease patients is poorly understood and impedes our progress toward the development of novel therapies to treat pain associated with sickle cell disease. The orexin/hypocretin system offers a novel approach to treat chronic pain and hyperalgesia. These neuropeptides are synthesized in three regions: perifornical area (PFA), lateral hypothalamus (LH), and dorsomedial hypothalamus (DMH). Data suggest that orexin–A neuropeptide has an analgesic effect on inflammatory pain and may affect mechanisms underlying the maintenance of neuropathic pain. The purpose of this study was to determine whether there are neuronal activation differences in the orexin system as a result of neuropathic pain testing in a mouse model of sickle cell disease. Female transgenic sickle mice that express exclusively (99%) human sickle hemoglobin (HbSS-BERK) and age-/gender-matched controls (HbAA-BERK mice; n = 10/group, 20–30 g) expressing normal human hemoglobin A were habituated to each test protocol and environment before collecting baseline measurements and testing. Four measures were used to assess pain-related behaviors: thermal/heat hyperalgesia, cold hyperalgesia, mechanical hyperalgesia, and deep-tissue hyperalgesia. Hypothalamic brain sections from HbAA-BERK and HbSS-BERK mice were processed to visualize orexin and c-Fos immunoreactivity and quantified. The percentage of double labeled neurons in the PFA was significantly higher than the percentage of double labeled neurons in the LH orexin field of HbAA-BERK mice (*p \u3c 0.05). The percentages of double labeled neurons in PFA and DMH orexin fields are significantly higher than those neurons in the LH of HbSS-BERK mice (*p \u3c 0.05). These data suggest that DMH orexin neurons were preferentially recruited during neuropathic pain testing and a more diverse distribution of orexin neurons may be required to produce analgesia in response to pain in the HbSS-BERK mice. Identifying specific orexin neuronal populations that are integral in neuropathic pain processing will allow us to elucidate mechanisms that provide a more selective, targeted approach in treating of neuropathic pain in sickle cell disease

    Impairment of LTP in 192-saporin infused rats.

    No full text
    <p>(A) Summary data for experiments in which LTP was induced by TBS and measured at 55–60 min after TBS. LTP in 192-saporin infuced rats (gray circles) was reduced compared to the saline infused controls (black circles). (B) Sample traces depicting LTP in saline infused control rats and lack of LTP in 192-saporin infused rats. Traces with gray lines represent those collected prior to TBS, during baseline recording, and the traces with black lines represent those taken 55–60 min after TBS. Calibration: 1 mV, 20 ms. (c) Bar chart showing drastic reduction of LTP in 192-saporin infused rats (gray) compared to the saline infused controls (black).</p

    Reduction in the TBS facilitation in 192-saporin infused rats.

    No full text
    <p>(A) TBS stimulation protocol and samples of TBS induced traces from saline infused control and 192-saporin infused rats. (B) Bar chart exhibiting reduction of facilitation within the first TBS in 192-saporin infused rats (gray) compared to the controls (black); Calibration: 4 mV, 200 ms. (C) Facilitation of between TBS potentiation was impaired in 192-saporin infused rats (gray bars) compared to the saline infused controls (black bars) as shown by the sample traces and the bar chart. Sample traces are the fEPSPs in response to the first pulse in the first TBS. Calibration: 2 mV, 20 ms.</p

    Infusion of 192-saporin results in lesioning of cholinergic neurons.

    No full text
    <p>Photomicrographs (50× magnification) of MS region immunostained with anti-ChAT antibody in (A) a saline infused rat and (B) in a rat infused with 192-saporin.</p

    Ablation of MS cholinergic pathway alters the single channel properties of AMPA receptors.

    No full text
    <p>Sample traces of single channel recordings and respective current amplitude histograms for (A) non-infused, (B) saline infused, and (C) 192-saporin infused rats (Calibration: each 3 pA, 200 ms). Dwell open time histograms of (D) non-infused, (E) saline infused, and (F) 192-saporin infused rats were fitted by two exponential fittings. The AMPA elicited currents were completely blocked by the addition of CNQX (data not shown).</p

    Cholinergic depletion in the MS leads to alterations in NMDA elicited synaptic single channel currents.

    No full text
    <p>Sample traces and respective current amplitude histograms of (A) non-infused control rats, (B) saline infused rats, and (C) 192-saporin infused rats show that channel open peak (right peaks in each histogram) in the 192-saporin data is reduced demonstrating a decrease in open probability (Calibration: each 4 pA, 200 ms). Dwell open time histograms of NMDA currents were best fitted with two terms for (D) non-infused, (E) saline infused, and (F) 192 saporin infused data. The NMDA elicited currents were confirmed by addition of APV to the extracellular solution to completely block these currents (Data not shown).</p

    Inhibition of MS cholinergic pathway decreases the AMPA receptor activity in the CA1 pyramidal neurons of the hippocampus.

    No full text
    <p>(A) Representatives of AMPA receptor mediated sEPSC traces in controls and 192-saporin infused rats recorded at −65 mV membrane potential; Calibration: 40 pA, 1 s. The adjacent average traces depict the reduction in the amplitude in the MS cholinergic lesioned rats compared to control rats, which show no difference in amplitude; Calibration: 15 pA, 30 ms. (B) Cumulative fraction plot of sEPSC amplitude from the composite data shows the shift of 192-saporin curve to the left from the controls, indicating reductions in amplitude. (C) Cumulative fraction plots of sEPSC interevent intervals exhibiting increased values for 192-saporin infused rats suggesting decreased frequency. (D) Representative traces of AMPA receptor mediated mEPSCs for the three groups (Calibration: 10 pA, 1 s) and the mEPSCs (Calibration: 10 pA, 30 ms) to show reduced amplitude in the 192-saporin infused rats. (E) Cumulative fraction plots for amplitude and (F) interevent interval exhibiting reduced amplitude and frequency.</p
    corecore