6 research outputs found

    Greening of the brown-dwarf desert EPIC 212036875b: a 51 M-J object in a 5-day orbit around an F7V star

    Get PDF
    Context. Although more than 2000 brown dwarfs have been detected to date, mainly from direct imaging, their characterisation is difficult due to their faintness and model-dependent results. In the case of transiting brown dwarfs, however, it is possible to make direct high-precision observations. Aims. Our aim is to investigate the nature and formation of brown dwarfs by adding a new well-characterised object, in terms of its mass, radius and bulk density, to the currently small sample of less than 20 transiting brown dwarfs. Methods. One brown dwarf candidate was found by the KESPRINT consortium when searching for exoplanets in the K2 space mission Campaign 16 field. We combined the K2 photometric data with a series of multicolour photometric observations, imaging, and radial velocity measurements to rule out false positive scenarios and to determine the fundamental properties of the system. Results. We report the discovery and characterisation of a transiting brown dwarf in a 5.17-day eccentric orbit around the slightly evolved F7V star EPIC 212036875. We find a stellar mass of 1.15 +/- 0.08 M-circle dot, a stellar radius of 1.41 +/- 0.05 R-circle dot, and an age of 5.1 +/- 0.9 Gyr. The mass and radius of the companion brown dwarf are 51 +/- 2 M-J and 0.83 +/- 0.03 R-J, respectively, corresponding to a mean density of 108(-13)(+15) g cm(-3). Conclusions. EPIC 212036875 b is a rare object that resides in the brown-dwarf desert. In the mass-density diagram for planets, brown dwarfs, and stars, we find that all giant planets and brown dwarfs follow the same trend from similar to 0.3 M-J to the turn-over to hydrogen burning stars at similar to 73 M-J. EPIC 212036875 b falls close to the theoretical model for mature H/He dominated objects in this diagram as determined by interior structure models. We argue that EPIC 212036875 b formed via gravitational disc instabilities in the outer part of the disc, followed by a quick migration. Orbital tidal circularisation may have started early in its history for a brief period when the brown dwarf\u27s radius was larger. The lack of spin-orbit synchronisation points to a weak stellar dissipation parameter (Q(star)\u27 greater than or similar to 10(8)), which implies a circularisation timescale of greater than or similar to 23 Gyr, or suggests an interaction between the magnetic and tidal forces of the star and the brown dwarf

    GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star

    Get PDF
    Ultrashort-period (USP) exoplanets have orbital periods shorter than 1 day. Precise masses and radii of USP exoplanets could provide constraints on their unknown formation and evolution processes. We present the work from Lam et al. 2021 (Science, 374, 1271) and report the detection and characterization of the USP planet GJ 367b using high-precision photometry and radial velocity observations. GJ 367b orbits a bright (V-band magnitude of 10.2), nearby, and red (M-type) dwarf star every 7.7 hours. GJ 367b has a radius of 0.718 ± 0.054 Earth-radii and a mass of 0.546 ± 0.078 Earth-masses, making it a sub-Earth planet. The corresponding bulk density is 8.106 ± 2.165 grams per cubic centimeter - close to that of iron. An interior structure model predicts that the planet has an iron core radius fraction of 86 ± 5%, similar to that of Mercury's interior

    Application of Modern Multi-Sensor Holter in Diagnosis and Treatment

    No full text
    Modern Holter devices are very trendy tools used in medicine, research, or sport. They monitor a variety of human physiological or pathophysiological signals. Nowadays, Holter devices have been developing very fast. New innovative products come to the market every day. They have become smaller, smarter, cheaper, have ultra-low power consumption, do not limit everyday life, and allow comfortable measurements of humans to be accomplished in a familiar and natural environment, without extreme fear from doctors. People can be informed about their health and 24/7 monitoring can sometimes easily detect specific diseases, which are normally passed during routine ambulance operation. However, there is a problem with the reliability, quality, and quantity of the collected data. In normal life, there may be a loss of signal recording, abnormal growth of artifacts, etc. At this point, there is a need for multiple sensors capturing single variables in parallel by different sensing methods to complement these methods and diminish the level of artifacts. We can also sense multiple different signals that are complementary and give us a coherent picture. In this article, we describe actual interesting multi-sensor principles on the grounds of our own long-year experiences and many experiments

    It Takes Two Planets in Resonance to Tango around K2-146

    Get PDF
    K2-146 is a cool, 0.358M dwarf that was found to host a mini-Neptune with a 2.67 day period. The planet exhibited strong transit timing variations (TTVs) of greater than 30 minutes, indicative of the presence of an additional object in the system. Here we report the discovery of the previously undetected outer planet in the system, K2-146 c, using additional photometric data. K2-146 c was found to have a grazing transit geometry and a 3.97 day period. The outer planet was only significantly detected in the latter K2 campaigns presumably because of precession of its orbital plane. The TTVs of K2-146 b and c were measured using observations spanning a baseline of almost 1200 days. We found strong anti -correlation in the TTVs, suggesting the two planets are gravitationally interacting. Our TTV and transit model analyses revealed that K2-146 b has a radius of 2.25 0.10 Re and a mass of 5.6 0.7 Me, whereas K2-146 c has a radius of 2.591 Re and a mass of 7.1 0.9 Me. The inner and outer planets likely have moderate eccentricities of e = 0.14 0.07 and 0.16 0.07, respectively. Long-term numerical integrations of the two -planet orbital solution show that it can be dynamically stable for at least 2 Myr. We show that the resonance angles of the planet pair are librating, which may be an indication that K2-146 b and c are in a 3:2 mean motion resonance. The orbital architecture of the system points to a possible convergent migration origin

    TOI-503: The First Known Brown-dwarf Am-star Binary from the TESS Mission

    No full text
    We report the discovery of an intermediate-mass transiting brown dwarf (BD), TOI-503b, from the TESS mission. TOI-503b is the first BD discovered by TESS, and it has circular orbit around a metallic-line A-type star with a period of P = 3.6772 ± 0.0001 days. The light curve from TESS indicates that TOI-503b transits its host star in a grazing manner, which limits the precision with which we measure the BD's radius . We obtained high-resolution spectroscopic observations with the FIES, Ondrejov, PARAS, Tautenburg, and TRES spectrographs, and measured the mass of TOI-503b to be M b = 53.7 ± 1.2 a radius of R = 1.70 ± 0.05R o, an effective temperature of T eff = 7650 ± 160 K, and a relatively high metallicity of 0.61 ± 0.07 dex. We used stellar isochrones to derive the age of the system to be ∼180 Myr, which places its age between that of RIK 72b (a ∼10 Myr old BD in the Upper Scorpius stellar association) and AD 3116b (a ∼600 Myr old BD in the Praesepe cluster). Given the difficulty in measuring the tidal interactions between BDs and their host stars, we cannot precisely say whether this BD formed in situ or has had its orbit circularized by its host star over the relatively short age of the system. Instead, we offer an examination of plausible values for the tidal quality factor for the star and BD. TOI-503b joins a growing number of known short-period, intermediate-mass BDs orbiting main-sequence stars, and is the second such BD known to transit an A star, after HATS-70b. With the growth in the population in this regime, the driest region in the BD desert is reforesting
    corecore