3 research outputs found

    Ratiometric Imaging of Tissue by Two-Photon Microscopy: Observation of a High Level of Formaldehyde around Mouse Intestinal Crypts

    No full text
    Ratiometric imaging by two-photon microscopy can offer a viable tool for the relative quantification of biological analytes inside tissue with minimal influence from environmental factors that affect fluorescence signal. We demonstrate the ratiometric imaging of formaldehyde at the suborgan level using a two-photon fluorescent probe, which involves pixel-to-pixel ratiometric data transformation. This study reveals for the first time a high level of formaldehyde around the crypts of mouse small intestine, implicating its possible protective role along with the released antimicrobials from the Paneth cells

    Rapid Point-of-Care Quantification of Human Serum Albumin in Urine Based on Ratiometric Fluorescence Signaling Driven by Intramolecular H‑Bonding

    No full text
    Human serum albumin exerts multifunctions, such as maintaining the oncotic pressure of plasma, carrying hydrophobic molecules, and acting as the most important antioxidant in the blood. Lower serum albumin levels are linked to several cardiovascular diseases, and dysfunction of albumin reabsorption in the kidney is linked to liver disease, renal disorder, and diabetes. Albumin is thus a powerful diagnostic and prognostic marker; however, its quantification in urine by readily affordable tools is challenging owing to its very low concentration. To address this issue, we developed a ratiometric fluorescent probe with multiple advantages through a systematic structure variation of a benzocoumarin fluorophore and, further, a prototype of a smartphone-based point-of-care device. We determined albumin levels in urine and observed that a smoking person has notably higher urine albumin than a nonsmoking person. The cheap device provides a promising tool for albumin-associated disease diagnosis in communities with limited resources

    Two-Photon Absorbing Dyes with Minimal Autofluorescence in Tissue Imaging: Application to <i>in Vivo</i> Imaging of Amyloid‑β Plaques with a Negligible Background Signal

    No full text
    Fluorescence imaging of tissues offer an essential means for studying biological systems. Autofluorescence becomes a serious issue in tissue imaging under excitation at UV–vis wavelengths where biological molecules compete with the fluorophore. To address this critical issue, a novel class of fluorophores that can be excited at ∼900 nm under two-photon excitation conditions and emits in the red wavelength region (≥600 nm) has been disclosed. The new π-extended dipolar dye system shows several advantageous features including minimal autofluorescence in tissue imaging and pronounced solvent-sensitive emission behavior, compared with a widely used two-photon absorbing dye, acedan. As an important application of the new dye system, one of the dyes was developed into a fluorescent probe for amyloid-β plaques, a key biomarker of Alzheimer’s disease. The probe enabled <i>in vivo</i> imaging of amyloid-β plaques in a disease-model mouse, with negligible background signal. The new dye system has great potential for the development of other types of two-photon fluorescent probes and tags for imaging of tissues with minimal autofluorescence
    corecore