68 research outputs found

    Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities

    Get PDF
    Recent scientific evidence suggests that food proteins not only serve as nutrients, but can also modulate the body’s physiological functions. These physiological functions are primarily regulated by some peptides that are encrypted in the native protein sequences. These bioactive peptides can exert health beneficial properties and thus are considered as a lead compound for the development of nutraceuticals or functional foods. In the past fewdecades, awide range of food-derived bioactive peptide sequences have been identified, with multiple health beneficial activities. However, the commercial application of these bioactive peptides has been delayed because of the absence of appropriate and scalable production methods, proper exploration of the mechanisms of action, high gastro-intestinal digestibility, variable absorption rate, and the lack ofwell-designed clinical trials to provide the substantial evidence for potential health claims. This review article discusses the current techniques, challenges of the current bioactive peptide production techniques, the oral use and gastrointestinal bioavailability of these food-derived bioactive peptides, and the overall regulatory environment

    Egg-Derived Tri-Peptide IRW Exerts Antihypertensive Effects in Spontaneously Hypertensive Rats

    Get PDF
    Background: There is a growing interest in using functional food components as therapy for cardiovascular diseases such as hypertension. We have previously characterized a tri-peptide IRW (Ile-Arg-Trp) from egg white protein ovotransferrin; this peptide showed anti-inflammatory, anti-oxidant and angiotensin converting enzyme (ACE) inhibitor properties in vitro. Given the pathogenic roles played by angiotensin, oxidative stress and inflammation in the spontaneously hypertensive rat (SHR), we tested the therapeutic potential of IRW in this well-established model of hypertension. Methods and Results: 16–17 week old male SHRs were orally administered IRW at either a low dose (3 mg/Kg BW) or a high dose (15 mg/Kg BW) daily for 18 days. Blood pressure (BP) and heart rate were measured by telemetry. Animals were sacrificed at the end of the treatment for vascular function studies and measuring markers of inflammation. IRW treatment attenuated mean BP by ~10 mmHg and ~40 mmHg at the low- and high-dose groups respectively compared to untreated SHRs. Heart rate was not affected. Reduction in BP was accompanied by the restoration of diurnal variations in BP, preservation of nitric oxide dependent vasorelaxation, as well as reduction of plasma angiotensin II, other inflammatory markers and tissue fibrosis. Conclusion: Our results demonstrate anti-hypertensive effects of IRW in vivo likely mediated through ACE inhibition, endothelial nitric oxide synthase and anti-inflammatory properties

    Beneficial Effects of Simulated Gastro-Intestinal Digests of Fried Egg and Its Fractions on Blood Pressure, Plasma Lipids and Oxidative Stress in Spontaneously Hypertensive Rats

    Get PDF
    Background: We have previously characterized several antihypertensive peptides in simulated digests of cooked eggs and showed blood pressure lowering property of fried whole egg digest. However, the long-term effects of this hydrolysate and its fractions on blood pressure are not known. Therefore, the objectives of the study were to determine the effects of long term administration of fried whole egg hydrolysate and its fractions (i.e. egg white and egg yolk) on regulation of blood pressure and associated factors in cardiovascular disease such as plasma lipid profile and tissue oxidative stress. Methods and Results: We used spontaneously hypertensive rats (SHR), an animal model of essential hypertension. Hydrolysates of fried egg and its fractions were prepared by simulated gastro-intestinal digestion with pepsin and pancreatin. 16–17 week old male SHRs were orally administered fried whole egg hydrolysate, non-hydrolyzed fried whole egg, egg white hydrolysate or egg yolk hydrolysates (either defatted, or not) daily for 18 days. Blood pressure (BP) and heart rate were monitored by telemetry. Animals were sacrificed at the end of the treatment for vascular function studies and evaluating plasma lipid profile and tissue oxidative stress. BP was reduced by feeding fried whole egg hydrolysate but not by the nonhydrolyzed product suggesting a critical role for in vitro digestion in releasing anti-hypertensive peptides. Egg white hydrolysate and defatted egg yolk hydrolysate (but not egg yolk hydrolysate) also had similar effects. Reduction in BP was accompanied by the restoration of nitric oxide (NO) dependent vasorelaxation and reduction of plasma angiotensin II. Fried whole egg hydrolysate also reduced plasma levels of triglyceride although it was increased by the non-hydrolyzed sample. Additionally the hydrolyzed preparations attenuated tissue oxidative stress. Conclusion: Our results demonstrate that fried egg hydrolysates exert antihypertensive effects, improve plasma lipid profile and attenuate tissue oxidative stress in vivo

    Signaling kinases in neutrophil extravasation

    No full text
    Bibliography: p. 147-17

    Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities

    Get PDF
    Recent scientific evidence suggests that food proteins not only serve as nutrients, but can also modulate the body’s physiological functions. These physiological functions are primarily regulated by some peptides that are encrypted in the native protein sequences. These bioactive peptides can exert health beneficial properties and thus are considered as a lead compound for the development of nutraceuticals or functional foods. In the past fewdecades, awide range of food-derived bioactive peptide sequences have been identified, with multiple health beneficial activities. However, the commercial application of these bioactive peptides has been delayed because of the absence of appropriate and scalable production methods, proper exploration of the mechanisms of action, high gastro-intestinal digestibility, variable absorption rate, and the lack ofwell-designed clinical trials to provide the substantial evidence for potential health claims. This review article discusses the current techniques, challenges of the current bioactive peptide production techniques, the oral use and gastrointestinal bioavailability of these food-derived bioactive peptides, and the overall regulatory environment

    Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) promote adipocyte differentiation and inhibit inflammation in 3T3-F442A cells.

    No full text
    Milk derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) have shown promise as anti-hypertensive agents due to their inhibitory effects on angiotensin converting enzyme (ACE). Due to the key inter-related roles of hypertension, chronic inflammation and insulin resistance in the pathogenesis of metabolic syndrome, there is growing interest in investigating established anti-hypertensive agents for their effects on insulin sensitivity and inflammation. In this study, we examined the effects of IPP and VPP on 3T3-F442A murine pre-adipocytes, a widely used model for studying metabolic diseases. We found that both IPP and VPP induced beneficial adipogenic differentiation as manifested by intracellular lipid accumulation, upregulation of peroxisome proliferator-activated receptor gamma (PPARγ) and secretion of the protective lipid hormone adiponectin by these cells. The observed effects were similar to those induced by insulin, suggesting potential benefits in the presence of insulin resistance. IPP and VPP also inhibited cytokine induced pro-inflammatory changes such as reduction in adipokine levels and activation of the nuclear factor kappa B (NF-κB) pathway. Taken together, our findings suggest that IPP and VPP exert insulin-mimetic adipogenic effects and prevent inflammatory changes in adipocytes, which may offer protection against metabolic disease

    G-protein coupled receptor 30 (GPR30): a novel regulator of endothelial inflammation.

    Get PDF
    Estrogen, the female sex hormone, is known to exert anti-inflammatory and anti-atherogenic effects. Traditionally, estrogen effects were believed to be largely mediated through the classical estrogen receptors (ERs). However, there is increasing evidence that G-protein coupled receptor 30 (GPR30), a novel estrogen receptor, can mediate many estrogenic effects on the vasculature. Despite this, the localization and functional significance of GPR30 in the human vascular endothelium remains poorly understood. Given this background, we examined the subcellular location and potential anti-inflammatory roles of GPR30 using human umbilical vein endothelial cells as a model system. Inflammatory changes were induced by treatment with tumor necrosis factor (TNF), a pro-inflammatory cytokine involved in atherogenesis and many other inflammatory conditions. We found that GPR30 was located predominantly in the endothelial cell nuclei. Treatment with the selective GPR30 agonist G-1 partially attenuated the TNF induced upregulation of pro-inflammatory proteins such as intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was completely abolished by the selective GPR30 antagonist G-15, suggesting that it was indeed mediated in a GPR30 dependent manner. Interestingly, estrogen alone had no effects on TNF-treated endothelium. Concomitant activation of the classical ERs blocked the anti-inflammatory effects of G-1, indicating opposing effects of GPR30 and the classical ERs. Our findings demonstrate that endothelial GPR30 is a novel regulator of the inflammatory response which could be a potential therapeutic target against atherosclerosis and other inflammatory diseases

    Phosvitin Derived Phospho-Peptides Show Better Osteogenic Potential than Intact Phosvitin in MC3T3-E1 Osteoblastic Cells

    No full text
    Phosphorylated proteins from food sources have been investigated as regulators of bone formation with potential benefits in treating osteoporosis. Egg, a cheap and nutritious food, is also the source of various proteins and bioactive peptides with applications in human health. Egg yolk is rich in phosvitin, the most phosphorylated protein in nature. Phosvitin has been shown to improve bone health in experimental animals, although the molecular mechanisms and its specific effects on bone-forming osteoblastic cells are incompletely understood. Previous work in our group has identified pancreatin-generated phosvitin phospho-peptides (PPP) as a potential source for bioactive peptides. Given this background, we examined the roles of both phosvitin and PPP in the function of osteoblastic cells. Our results demonstrated their potential to improve bone health by promoting osteoblast differentiation and proliferation, suppressing osteoclast recruitment and the deposition of extracellular matrix, although PPP appeared to demonstrate superior osteogenic functions compared to phosvitin alone

    Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress

    Get PDF
    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases
    corecore