4 research outputs found

    Hydrolysis and transesterification of parabens in an aqueous solution in the presence of glycerol and boric acid

    Get PDF
    In a solution containing 0.067% methylparaben, 0.033% propylparaben, 3.4% glycerol and 2.0% boric acid, concentrations of both parabens, 4 hydroxybenzoic acid and 2,3-dihydroxypropyl 4-hydroxybenzoate were monitored for up to 68 months storage. 4-hydroxybenzoic acid is the main hydrolysis product of parabens, while 2,3-dihydroxypropyl 4 hydroxybenzoate was proposed as the main product of transesterification of parabens with glycerol. Results of an HPLC evaluation of parabens, 4-hydroxybenzoic acid and 2,3- dihydroxypropyl 4-hydroxybenzoate showed that the decomposition of 68 months old samples stored at room temperature did not exceed 2.0%. The stability of both parabens in a medicinal preparation of the stated composition has thus been satisfactorily demonstrated after more than 5 years of storage under ambient conditions. The transesterification reaction was shown to influence the chemical stability of parabens to an extent comparable to hydrolysis. Moreover, the presence of 2,3-dihydroxypropyl 4-hydroxybenzoate in the solution containing glycerol and boric acid was confirmed by 1H-NMR spectroscopy

    Hydrolysis and transesterification of parabens in an aqueous solution in the presence of glycerol and boric acid

    No full text
    In a solution containing 0.067% methylparaben, 0.033% propylparaben, 3.4% glycerol and 2.0% boric acid, concentrations of both parabens, 4 hydroxybenzoic acid and 2,3-dihydroxypropyl 4-hydroxybenzoate were monitored for up to 68 months storage. 4-hydroxybenzoic acid is the main hydrolysis product of parabens, while 2,3-dihydroxypropyl 4 hydroxybenzoate was proposed as the main product of transesterification of parabens with glycerol. Results of an HPLC evaluation of parabens, 4-hydroxybenzoic acid and 2,3- dihydroxypropyl 4-hydroxybenzoate showed that the decomposition of 68 months old samples stored at room temperature did not exceed 2.0%. The stability of both parabens in a medicinal preparation of the stated composition has thus been satisfactorily demonstrated after more than 5 years of storage under ambient conditions. The transesterification reaction was shown to influence the chemical stability of parabens to an extent comparable to hydrolysis. Moreover, the presence of 2,3-dihydroxypropyl 4-hydroxybenzoate in the solution containing glycerol and boric acid was confirmed by 1H-NMR spectroscopy

    Annual Report 2023 and Phase-I Closeout

    No full text
    This report summarises the activities of the CERN strategic R&D programme on technologies for future experiments during the year 2023, and highlights the achievements of the programme during its first phase 2020-2023
    corecore