4 research outputs found

    The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes

    Get PDF
    Immunoglobulins, antigens and complement can assemble to form immune complexes (IC). ICs can be detrimental as they propagate inflammation in autoimmune diseases. Like ICs, submicron extracellular vesicles termed microparticles (MP) are present in the synovial fluid from patients affected with autoimmune arthritis. We examined MPs in rheumatoid arthritis (RA) using high sensitivity flow cytometry and electron microscopy. We find that the MPs in RA synovial fluid are highly heterogeneous in size. The observed larger MPs were in fact MP-containing ICs (mpICs) and account for the majority of the detectable ICs. These mpICs frequently express the integrin CD41, consistent with platelet origin. Despite expression of the Fc receptor FcĪ³RIIa by platelet-derived MPs, we find that the mpICs form independently of this receptor. Rather, mpICs display autoantigens vimentin and fibrinogen, and recognition of these targets by anti-citrullinated peptide antibodies contributes to the production of mpICs. Functionally, platelet mpICs are highly pro-inflammatory, eliciting leukotriene production by neutrophils. Taken together, our data suggest a unique role for platelet MPs as autoantigen-expressing elements capable of perpetuating formation of inflammatory ICs

    Dual-function protein in plant defence: seed lectin from Dolichos biflorus (horse gram) exhibits lipoxygenase activity

    No full text
    Plantā€“pathogen interactions play a vital role in developing resistance to pests. Dolichos biflorus (horse gram), a leguminous pulse crop of the subtropics, exhibits amazing defence against attack by pests/pathogens. Investigations to locate the possible source of the indomitable pest resistance of D. biflorus, which is the richest source of LOX (lipoxygenase) activity, have led to a molecule that exhibits LOX-like functions. The LOX-like activity associated with the molecule, identified by its structure and stability to be a tetrameric lectin, was found to be unusual. The evidence for the lectin protein with LOX activity has come from (i) MALDIā€“TOF (matrix-assisted laser-desorption ionizationā€“time-of-flight) MS, (ii) N-terminal sequencing, (iii) partial sequencing of the tryptic fragments of the protein, (iv) amino acid composition, and (v) the presence of an Mn(2+) ion. A hydrophobic binding site of the tetrameric lectin, along with the presence of an Mn(2+) ion, accounts for the observed LOX like activity. This is the first ever report of a protein exhibiting both haemagglutination and LOX-like activity. The two activities are associated with separate loci on the same protein. LOX activity associated with this molecule adds a new dimension to our understanding of lectin functions. This observation has wide implications for the understanding of plant defence mechanisms against pests and the cellular complexity in plantā€“pathogen interactions that may lead to the design of transgenics with potential to impart pest resistance to other crops
    corecore