25 research outputs found

    Design Sensitivities of the Superconducting Parallel-Bar Cavity

    Get PDF
    The superconducting parallel-bar cavity has properties that makes it attractive as a deflecting or crabbing rf structure. For example it is under consideration as an rf separator for the Jefferson Lab 12 GeV upgrade and as a crabbing structure for a possible LHC luminosity upgrade. In order to maintain the purity of the deflecting mode and avoid mixing with the near accelerating mode caused by geometrical imperfection, a minimum frequency separation is needed which depends on the expected deviations from perfect symmetry. We have done an extensive analysis of the impact of several geometrical imperfections on the properties of the parallel-bar cavities and the effects on the beam, and present the results in this paper

    Characteristics and Fabrication of a 499 Mhz Superconducting Deflecting Cavity for the Jefferson Lab 12 GEV Upgrade

    Get PDF
    A 499 MHz parallel bar superconducting deflecting cavity has been designed and optimized [1,2] for a possible implementation at the Jefferson Lab. Previously the mechanical analysis [3], mainly stress, was performed. Since then pressure sensitivity was studied further and the cavity parts were fabricated. The prototype cavity is not completed due to the renovation at Jefferson Lab which resulted in the temporary shutdown of the electron beam welding facility. This paper will present the analysis results and facts encountered during fabrication. The unique geometry of the cavity and its required mechanical strength present interesting manufacturing challenges

    RF Modeling Using Parallel Codes ACE3P for the 400-MHz Parallel-Bar/Ridged-Waveguide Compact Crab Cavity for the LHC HiLumi Upgrade

    Get PDF
    Schemes utilizing crab cavities to achieve head-on beam-beam collisions were proposed for the LHC HiLumi upgrade. These crabbing schemes require that the crab cavities be compact in order to fit into the tight spacing available in the existing LHC beamlines at the location where the crab cavities will be installed. Under the support of US LARP program, Old Dominion University and SLAC have joint efforts to develop a 400-MHz compact superconducting crab cavity to meet the HiLumi upgrade requirements. In this paper, we will present the RF modeling and analysis of a parallel-bar/ridged-waveguide shaped 400-MHz compact cavity design that can be used for both the horizontal and vertical crabbing schemes. We will also present schemes for HOM damping and multipacting analysis for such a design

    Analysis of Higher Order Multipoles of the 952.6 Mhz RF-Dipole Crabbing Cavity for the Jefferson Lab Electron Ion Collider

    Get PDF
    The crabbing system is a key feature in the Jefferson Lab Electron-Ion Collider (JLEIC) required to increase the luminosity of the colliding bunches. A local crabbing system will be installed with superconducting rf-dipole crabbing cavities operating at 952.6 MHz. The field non-uniformity across the beam aperture in the crabbing cavities produces higher order multipole components, similar to that which are present in magnets. Knowledge of higher order mode multipole field effects is important for accurate beam dynamics study for the crabbing system. In this paper, we quantify the multipole components and analyse their effects on the beam dynamics

    Design of an RF-Dipole Crabbing Cavity System for the Electron-Ion Collider

    Get PDF
    The Electron-Ion Collider requires several crabbing systems to facilitate head-on collisions between electron and proton beams in increasing the luminosity at the interaction point. One of the critical rf systems is the 197 MHz crabbing system that will be used in crabbing the proton beam. Many factors such as the low operating frequency, large transverse voltage requirement, tight longitudinal and transverse impedance thresholds, and limited beam line space makes the crabbing cavity design challenging. The rf-dipole cavity design is considered as one of the crabbing cavity options for the 197 MHz crabbing system. The cavity is designed including the HOM couplers, FPC and other ancillaries. This paper presents the detailed electromagnetic design, mechanical analysis, and conceptual cryomodule design of the crabbing system

    HOM Damper Design for BNL EIC 197MHZ Crab Cavity

    Get PDF
    The interaction region (IR) crab cavity system is a special RF system to compensate the loss of luminosity due to a 25 mrad crossing angle at the interaction point (IP) for Brookhaven National Lab electron ion collider (BNL EIC). There will be six crab cavities, with four 197 MHz crab cavities and two 394 MHz crab cavities, installed on each side of the IP in the proton/ion ring, and one 394 MHz crab cavity on each side of the IP in the electron ring. Both rings share identical 394 MHz crab cavity design to minimize the cost and risk in designing a new RF system, and it will be scaled from 197 MHz crab cavity. In this paper, the higher order mode (HOM) damper design for 197 MHz crab cavity is introduced

    Development of Superconducting 500 MHZ Multi-Spoke Cavity for Electron Linacs

    Get PDF
    Multi-spoke cavities are well-known options for acceleration of heavy and light ions. A recently developed multi-spoke cavity for β=1 presents an attractive opportunity to use this cavity type for electron accelerators. One of the main attractive features of this cavity type is its compactness for relatively low frequency. A simplified design at 500 MHz allowed building of a multi-spoke cavity and cryomodule in a 2-year time frame with confidence and development of effective manufacturing techniques. It also constitutes an important step in proving the usefulness of this kind of cavity design for new applications in the electron machines. Niowave is now in a position to build on the success of this cavity to help advance the design of superconducting electron accelerators. Accelerating voltage of more then 4.3 MV in a single cavity at 4.5 K is expected with peak electric field of less then 21.7 MV/m, and peak magnetic field of less then 80 mT. The paper discusses the fabrication challenges of the complete cavity and the cryomodule, as well as room temperature and cryogenic test results

    Crab Crossing Schemes and Studies for Electron Ion Collider

    Get PDF
    This report shows our progress in crab crossing consideration for future electron-ion collider envisioned at JLab. In this design phase, we are evaluating two crabbing schemes viz., the deflecting and dispersive. The mathematical formulations and lattice design for these schemes are discussed in this paper. Numerical simulations involving particle tracking through a realistic deflecting RF cavity and optics illustrate the desired crab tilt of 25 mrad for 1.35 MV. Evolution of beam propagation are shown which provides the physical insight of the crabbing phenomenon

    Beam Dynamics Studies for Transverse Electromagnetic Mode Type rf Deflectors

    Get PDF
    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam

    Beam Dynamics Studies of Parallel-Bar Deflecting Cavities

    Get PDF
    We have performed three-dimensional simulations of beam dynamics for parallel-bar transverse electromagnetic mode (TEM) type RF separators: normal- and superconducting. The compact size of these cavities as compared to conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of eight 2-cell normal conducting cavities or a one- or two-cell superconducting structure are enough to produce the required vertical displacement at the Lambertson magnet. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam
    corecore