7 research outputs found

    Toward Pathogenic Biofilm Suppressors: Synthesis of Amino Derivatives of Pillar[5]arene and Supramolecular Assembly with DNA

    No full text
    New amino derivatives of pillar[5]arene were obtained in three stages with good yields. It was shown that pillar[5]arene containing thiaether and tertiary amino groups formed supramolecular complexes with low molecular weight model DNA. Pillar[5]arene formed complexes with a DNA nucleotide pair at a ratio of 1:2 (macrocycle/DNA base pairs), as demonstrated by UV-visible and fluorescence spectroscopy. The association constants of pillar[5]arene with DNA were lgKass1:1 = 2.38 and lgKass1:2 = 5.07, accordingly. By using dynamic light scattering and transmission electron microscopy, it was established that the interaction of pillar[5]arene containing thiaether and tertiary amino groups (concentration of 10−5 M) with a model nucleic acid led to the formation of stable nanosized macrocycle/DNA associates with an average particle size of 220 nm. It was shown that the obtained compounds did not exhibit a pronounced toxicity toward human adenocarcinoma cells (A549) and bovine lung epithelial cells (LECs). The hypothesis about a possible usage of the synthesized macrocycle for the aggregation of extracellular bacterial DNA in a biofilm matrix was confirmed by the example of St. Aureus. It was found that pillar[5]arene at a concentration of 10−5 M was able to reduce the thickness of the St. Aureus biofilm by 15%

    Fluorescein-Labeled Thiacalix[4]arenes as Potential Theranostic Molecules: Synthesis, Self-Association, and Antitumor Activity

    No full text
    In this paper, a series of thiacalix[4]arenes were synthesized as potential theranostic molecules for antitumor therapy. We propose an original strategy for the regioselective functionalization of thiacalix[4]arene with a fluorescent label to obtain antiangiogenic agent mimetics. The aggregation properties of the synthesized compounds were determined using the dynamic light scattering. The average hydrodynamic diameter of self-associates formed by the macrocycles in 1,3-alternate conformation is larger (277–323 nm) than that of the similar macrocycle in cone conformation (185–262 nm). The cytotoxic action mechanism of the obtained compounds and their ability to penetrate into of human lung adenocarcinoma and human duodenal adenocarcinoma cells were established using the MTT-test and flow cytometry. thiacalix[4]arenes in 1,3-alternate conformation did not have a strong toxic effect. The toxicity of macrocycles in cone conformations on HuTu-80 and A549 cells (IC50 = 21.83–49.11 µg/mL) is shown. The resulting macrocycles are potential theranostic molecules that combine both the pharmacophore fragment for neoplasmas treatment and the fluorescent fragment for monitoring the delivery and biodistribution of nanomedicines

    Toward Pathogenic Biofilm Suppressors: Synthesis of Amino Derivatives of Pillar[5]arene and Supramolecular Assembly with DNA

    No full text
    New amino derivatives of pillar[5]arene were obtained in three stages with good yields. It was shown that pillar[5]arene containing thiaether and tertiary amino groups formed supramolecular complexes with low molecular weight model DNA. Pillar[5]arene formed complexes with a DNA nucleotide pair at a ratio of 1:2 (macrocycle/DNA base pairs), as demonstrated by UV-visible and fluorescence spectroscopy. The association constants of pillar[5]arene with DNA were lgKass1:1 = 2.38 and lgKass1:2 = 5.07, accordingly. By using dynamic light scattering and transmission electron microscopy, it was established that the interaction of pillar[5]arene containing thiaether and tertiary amino groups (concentration of 10−5 M) with a model nucleic acid led to the formation of stable nanosized macrocycle/DNA associates with an average particle size of 220 nm. It was shown that the obtained compounds did not exhibit a pronounced toxicity toward human adenocarcinoma cells (A549) and bovine lung epithelial cells (LECs). The hypothesis about a possible usage of the synthesized macrocycle for the aggregation of extracellular bacterial DNA in a biofilm matrix was confirmed by the example of St. Aureus. It was found that pillar[5]arene at a concentration of 10−5 M was able to reduce the thickness of the St. Aureus biofilm by 15%

    Self-Healing Thiolated Pillar[5]arene Films Containing Moxifloxacin Suppress the Development of Bacterial Biofilms

    No full text
    Polymer self-healing films containing fragments of pillar[5]arene were obtained for the first time using thiol/disulfide redox cross-linking. These films were characterized by thermogravimetric analysis and differential scanning calorimetry, FTIR spectroscopy, and electron microscopy. The films demonstrated the ability to self-heal through the action of atmospheric oxygen. Using UV–vis, 2D 1H-1H NOESY, and DOSY NMR spectroscopy, the pillar[5]arene was shown to form complexes with the antimicrobial drug moxifloxacin in a 2:1 composition (logK11 = 2.14 and logK12 = 6.20). Films containing moxifloxacin effectively reduced Staphylococcus aureus and Klebsiella pneumoniae biofilms formation on adhesive surfaces
    corecore