86 research outputs found

    Evaluation of the association between the common E469K polymorphism in the ICAM-1 gene and diabetic nephropathy among type 1 diabetic patients in GoKinD population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ICAM-1 gene is a strong positional and biological candidate for susceptibility to the development of T1D and DN. We have recently demonstrated that SNP rs5498(E469K) confers susceptibility to the development of T1D and might be associated with DN in Swedish Caucasians. The present study aimed to further evaluate the association between the ICAM-1 genetic polymorphisms and DN.</p> <p>Methods</p> <p>Two common non-synonymous SNPs, including rs5498(E469K) and rs1799969(R241G), in the ICAM-1 gene were genotyped in 662 (312 female/350 male) T1D patients with DN and 620 (369/251) without DN. All patients were selected from the GoKinD study.</p> <p>Results</p> <p>Genotype distributions of both SNPs were in Hardy-Weinberg equilibrium but SNP rs5498(E469K) had high heterozygous index. In this SNP, the heterozygosity and positivity for the allele G were found to be significantly associated with DN in female T1D patients (P = 0.010, OR = 0.633, CI 95% 0.447–0.895 and P = 0.026, OR = 0.692, CI 95% 0.500–0.958). Furthermore, the female patients without DN carrying three genotypes A/A, A/G and G/G had different cystatin levels (0.79 ± 0.17, 0.81 ± 0.14 and 0.75 ± 0.12 mg/L, P = 0.021). No significant association of SNP rs1799969 (R241G) with DN was found.</p> <p>Conclusion</p> <p>The present study provides further evidence that SNP rs5498(E469K) in the ICAM-1 gene presents a high heterozygous index and the allele G of this polymorphism may confers the decreased risk susceptibility to the development of DN in female T1D patients among the GoKinD population.</p

    Effects of MCF2L2, ADIPOQ and SOX2 genetic polymorphisms on the development of nephropathy in type 1 Diabetes Mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>MCF2L2, ADIPOQ </it>and <it>SOX2 </it>genes are located in chromosome 3q26-27, which is linked to diabetic nephropathy (DN). <it>ADIPOQ </it>and <it>SOX2 </it>genetic polymorphisms are found to be associated with DN. In the present study, we first investigated the association between <it>MCF2L2 </it>and DN, and then evaluated effects of these three genes on the development of DN.</p> <p>Methods</p> <p>A total of 1177 type 1 diabetes patients with and without DN from the GoKinD study were genotyped with TaqMan allelic discrimination. All subjects were of European descent.</p> <p>Results</p> <p>Leu359Ile T/G variant in the <it>MCF2L2 </it>gene was found to be associated with DN in female subjects (P = 0.017, OR = 0.701, 95%CI 0.524-0.938) but not in males. The GG genotype carriers among female patients with DN had tendency decreased creatinine and cystatin levels compared to the carriers with either TT or TG genotypes. This polymorphism <it>MCF2L2-</it>rs7639705 together with SNPs of <it>ADIPOQ</it>-rs266729 and <it>SOX2</it>-rs11915160 had combined effects on decreased risk of DN in females (P = 0.001).</p> <p>Conclusion</p> <p>The present study provides evidence that <it>MCF2L2</it>, <it>ADIPOQ </it>and <it>SOX2 </it>genetic polymorphisms have effects on the resistance of DN in female T1D patients, and suggests that the linkage with DN in chromosome 3q may be explained by the cumulated genetic effects.</p

    Excessive Islet NO Generation in Type 2 Diabetic GK Rats Coincides with Abnormal Hormone Secretion and Is Counteracted by GLP-1

    Get PDF
    BACKGROUND: A distinctive feature of type 2 diabetes is inability of insulin-secreting beta-cells to properly respond to elevated glucose eventually leading to beta-cell failure. We have hypothesized that an abnormally increased NO production in the pancreatic islets might be an important factor in the pathogenesis of beta-cell dysfunction. PRINCIPAL FINDINGS: We show now that islets of type 2 spontaneous diabetes in GK rats display excessive NO generation associated with abnormal iNOS expression in insulin and glucagon cells, increased ncNOS activity, impaired glucose-stimulated insulin release, glucagon hypersecretion, and impaired glucose-induced glucagon suppression. Pharmacological blockade of islet NO production by the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) greatly improved hormone secretion from GK islets suggesting islet NOS activity being an important target to inactivate for amelioration of islet cell function. The incretin hormone GLP-1, which is used in clinical practice suppressed iNOS and ncNOS expression and activity with almost full restoration of insulin release and partial restoration of glucagon release. GLP-1 suppression of iNOS expression was reversed by PKA inhibition but unaffected by the proteasome inhibitor MG132. Injection of glucose plus GLP-1 in the diabetic rats showed that GLP-1 amplified the insulin response but induced a transient increase and then a poor depression of glucagon. CONCLUSION: The results suggest that abnormally increased NO production within islet cells is a significant player in the pathogenesis of type 2 diabetes being counteracted by GLP-1 through PKA-dependent, nonproteasomal mechanisms

    Functional and genetic analysis in type 2 diabetes of Liver X receptor alleles – a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver X receptor alpha <it>(LXRA</it>) and beta (<it>LXRB</it>) regulate glucose and lipid homeostasis in model systems but their importance in human physiology is poorly understood. This project aimed to determine whether common genetic variations in <it>LXRA </it>and <it>LXRB </it>associate with type 2 diabetes (T2D) and quantitative measures of glucose homeostasis, and, if so, reveal the underlying mechanisms.</p> <p>Methods</p> <p>Eight common single nucleotide polymorphisms in <it>LXRA </it>and <it>LXRB </it>were analyzed for association with T2D in one French cohort (N = 988 cases and 941 controls), and for association with quantitative measures reflecting glucose homeostasis in two non-diabetic population-based samples comprising N = 697 and N = 1344 adults. Investigated quantitative phenotypes included fasting plasma glucose, serum insulin, and HOMA<sub>IR </sub>as measure of overall insulin resistance. An oral glucose tolerance test was performed in N = 1344 of adults. The two alleles of the proximal <it>LXRB </it>promoter, differing only at the SNP rs17373080, were cloned into reporter vectors and transiently transfected, whereupon allele-specific luciferase activity was measured. rs17373080 overlapped, according to <it>in silico </it>analysis, with a binding site for Nuclear factor 1 (NF1). Promoter alleles were tested for interaction with NF1 using direct DNA binding and transactivation assays.</p> <p>Results</p> <p>Genotypes at two <it>LXRB </it>promoter SNPs, rs35463555 and rs17373080, associated nominally with T2D (P values 0.047 and 0.026). No <it>LXRA </it>or <it>LXRB </it>SNP associated with quantitative measures reflecting glucose homeostasis. The rs17373080 C allele displayed higher basal transcription activity (P value < 0.05). The DNA-mobility shift assay indicated that oligonucleotides corresponding to either rs17373080 allele bound NF1 transcription factors in whole cell extracts to the same extent. Different NF1 family members showed different capacity to transactivate the <it>LXRB </it>gene promoter, but there was no difference between promoter alleles in NF1 induced transactivation activity.</p> <p>Conclusion</p> <p>Variations in the <it>LXRB </it>gene promoter may be part of the aetiology of T2D. However, the association between <it>LXRB </it>rs35463555 and rs17373080, and T2D are preliminary and needs to be investigated in additional larger cohorts. Common genetic variation in <it>LXRA </it>is unlikely to affect the risk of developing T2D or quantitative phenotypes related to glucose homeostasis.</p

    Postprandial paradoxical IGFBP-1 response in obese patients with Type 2 diabetes

    No full text
    A B S T R A C T IGFs (insulin-like growth factors), which in an unbound form induce glucose and amino acid uptake, circulate bound to IGFBPs (IGF-binding proteins), which modulate their bioavailability and activity. The aim of the present study was to examine the effect of a standard meal [2301 kJ (550 kcal)] on the serum levels of IGFBP-1 in obese patients with T2DM (Type 2 diabetes mellitus), non-obese patients with T1DM (Type 1 diabetes mellitus) and healthy controls, using the artificial pancreas (Biostator ® ) to obtain a normal glycaemic response to the meal. IGFBP-1 levels decreased by 50 % over 2 h following the meal at a similar clearance in both the healthy controls and patients with T1DM, but no significant decline was seen in the patients with T2DM, despite a several-fold increase in insulin levels. The patients with T2DM were also studied during Sandostatin ® (somatostatin) infusion to decrease the inappropriate secretion of glucagon during the meal. During the 210 min of somatostatin infusion, the glucagon response was suppressed and IGFBP-1 levels were increased concomitantly with the peak in insulin levels, without any significant decrease after the meal. In conclusion, the impaired IGFBP-1 response to meal-related hyperinsulinaemia in obese patients with T2DM suggests a decreased availability of active IGF-1, leading to a decrease in glucose uptake during and after a meal in these patients. The stimulated meal response to glucagon, which contributes to postprandial hyperglycaemia, could not explain the increase in serum IGFBP-1 in these obese patients with T2DM

    Mild Type 11 Diabetes Markedly Increases Glucose Cycling in the Postabsorptive State and during Glucose Infusion Irrespective of Obesity

    No full text
    Abstract Glucose cycling (GC G &quot;± G6P) equals 14% of glucose production in postabsorptive man. Our aim was to determine glucose cycling in six lean and six overweight mild type II diabetics (fasting glycemia: 139±10 and 152±7 mg/dl), in postabsorptive state (PA) and during glucose infusion (2 mg/kg per min). 14 control subjects were weight and age matched. GC is a function of the enzyme that catalyzes the reaction opposite the net flux and is the difference between hepatic total glucose output (HTGO) and hepatic glucose production (HGP) (6-13HJ-glucose). Postabsorptively, GC is a function of glucokinase. With glucose infusion the flux is reversed (net glucose uptake), and GC is a function of glucose 6-phosphatase. In PA, GC was increased by 100% in lean (from 0.25±0.07 to 0.43±.08 mg/kg per min) and obese (from 0.22±0.05 to 0.50±0.07) diabetics. HGP and HTGO increased in lean and obese diabetics by 41 and 33%. Glucose infusion suppressed apparent phosphatase activity and gluconeogenesis much less in diabetics than controls, resulting in marked enhancement (400%) in HTGO and HGP, GC remained increased by 100%. Although the absolute responses of C-peptide and insulin were comparable to those of control subjects, they were inappropriate for hyperglycemia. Peripheral insulin resistance relates to decreased metabolic glucose clearance (MCR) and inadequate increase of uptake during glucose infusion. We conclude that increases in HGP and HTGO and a decrease of MCR are characteristic features of mild type II diabetes and are more pronounced during glucose infusion. There is also an increase in hepatic GC, a stopgap that controls changes from glucose production to uptake. Postabsorptively, this limits the increase of HGP and glycemia. In contrast, during glucose infusion, increased GC decreases hepatic glucose uptake and thus contributes to hyperglycemia. Obesity per se did not affect GC. An increase in glucose cycling and turnover indicate hepatic insulin resistance that is observed in addition to peripheral resistance. It is hypothesized that in pathogenesis of type II diabetes, augmented activity of glucose-6-phosphatase and kinase may be of importance. Introduction In the liver, substrate cycles may be operative at the three nonequilibrium reactions ofglucose metabolism: glucose cycl

    Ca2+–Secretion Coupling Is Impaired in Diabetic Goto Kakizaki rats

    No full text
    corecore