2,079 research outputs found

    The Hawking-Page phase transitions in the extended phase space in the Gauss-Bonnet gravity

    Full text link
    In this paper, the Hawking-Page phase transitions between the black holes and thermal anti-de Sitter (AdS) space are studied with the Gauss-Bonnet term in the extended phase space, in which the varying cosmological constant plays the role of an effective thermodynamic pressure. The Gauss-Bonnet term exhibits its effects via introducing the corrections to the black hole entropy and Gibbs free energy. The global phase structures, especially the phase transition temperature THPT_{\rm HP} and the Gibbs free energy GG, are systematically investigated, first for the Schwarzschild-AdS black holes and then for the charged and rotating AdS black holes in the grand canonical ensembles, with both analytical and numerical methods. It is found that there are terminal points in the coexistence lines, and THPT_{\rm HP} decreases at large electric potentials and angular velocities and also decreases with the Gauss-Bonnet coupling constant α\alpha.Comment: 13 pages, 13 figure

    Analysis on Efficiency of Slot-Cutting Around RC Frame Joint for “Strong Column and Weak Beam” Engineering Design

    Get PDF
    AbstractA numerical model was established with Adina software for beam-column joint on a reinforced concrete frame. The results for the traditional joint and that for the joint with slot around were compared. It is shown that the stress in the reinforce bar for slab close to beam will increase significantly with the applied top drift in horizontal direction, and less for far from the beam. It is also shown that for the joint with slot around, the yielding time of column bar will shift to a later time, while number of cracks on column becomes less. The time interval between the occurrence of plastic pivot on beam and on column becomes longer. The occurrence of column plastic pivot on the first floor would be delayed, which exhibits a failure type closer to the ductile mode

    Lithofacies, mineralogy, and pore characteristics of Permian marine tuffaceous rocks in the Sichuan Basin

    Get PDF
    Alongside volcanic eruptions in the middle and late Permian, the sedimentary environment and process changed, and the lithofacies and mineralogical characteristics varied conspicuously from the marine sediments in this period. Marine tuffaceous rocks beared strong witness to the marine and volcanic actions in this time. With experimental studies relying on field outcrop, thin section, scanning electron microscope, X-ray diffraction (XRD), mercury injection capillary pressure (MICP) and CT scan, the researchers analyzed the lithology, mineralogy, and pore characteristics of marine tuffaceous rocks. Among the Permian marine tuffaceous sections of the Sichuan Basin, three types of lithofacies were identified, namely tuff, sedimentary tuff, and tuffaceous mudstone. The mineral composition of the tuffaceous section includes quartz, feldspar, carbonate minerals, pyrite, clay, etc. The quartz content varies from 4.0% to 27.3%, with an average value of 13.0%; the feldspar content varies from 0 to 21.2%, with an average value of 9.8%; the carbonate mineral content varies from 8.52% to 53.45%, with an average value of 27.6%; the clay mineral content varies from 0 to 75.3%, with an average value of 44.8%; and the pyrite content varies from 0 to 13.4%, with an average value of 5.8%. The porosity of tuffaceous rocks varies from 2.2% to 8.1%, mostly concentrated in the range from 3% to 7% with an average level of 5.24%. There are mainly shrinkage pores, dissolution pores, intercrystalline pores, and organic pores. In terms of scale, the pores can be classified as micron-scale and nano-scale pores, and in terms of size, they are mainly micropores and mesopores, accounting for up to 92.12%. The pores are concentrated in the tuffaceous section and well interconnected, forming a complex organic-inorganic pore-fracture network system and bedding fractures with even better connectivity. The pores of the tuffaceous section are greatly influenced by lithofacies and mineral composition. The porosities of tuffaceous mudstone, sedimentary tuff and tuff rank downward, with average porosities of 6.5%, 5.09%, and 3.86% respectively. The felsic content is inversely correlated with porosity; the clay content and TOC content are positively correlated with porosity; the pyrite content is also inversely correlated with porosity. The marine tuffaceous section is similar to shale to a certain extent as it has relatively dense lithology, its pores are mainly of micron-scale and nano-scale and mainly include micropores and mesopores. It boasts the hydrocarbon-generating capacity and reservoir performance, serving as both a source rock and a reservoir. As a novel reservoir, the tuffaceous section can form a tight reservoir both generating and depositing gas and featuring source-reservoir paragenesis, lithological reservoir-controlling, and large-area stratified distribution, manifesting a promising future for exploration

    Mechanisms of increased risk of tumorigenesis in Atm and Brca1 double heterozygosity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both epidemiological and experimental studies suggest that heterozygosity for a single gene is linked with tumorigenesis and heterozygosity for two genes increases the risk of tumor incidence. Our previous work has demonstrated that <it>Atm/Brca1 </it>double heterozygosity leads to higher cell transformation rate than single heterozygosity. However, the underlying mechanisms have not been fully understood yet. In the present study, a series of pathways were investigated to clarify the possible mechanisms of increased risk of tumorigenesis in <it>Atm </it>and <it>Brca1 </it>heterozygosity.</p> <p>Methods</p> <p>Wild type cells, <it>Atm </it>or <it>Brca1 </it>single heterozygous cells, and <it>Atm</it>/<it>Brca1 </it>double heterozygous cells were used to investigate DNA damage and repair, cell cycle, micronuclei, and cell transformation after photon irradiation.</p> <p>Results</p> <p>Remarkable high transformation frequency was confirmed in <it>Atm</it>/<it>Brca1 </it>double heterozygous cells compared to wild type cells. It was observed that delayed DNA damage recognition, disturbed cell cycle checkpoint, incomplete DNA repair, and increased genomic instability were involved in the biological networks. Haploinsufficiency of either ATM or BRCA1 negatively impacts these pathways.</p> <p>Conclusions</p> <p>The quantity of critical proteins such as ATM and BRCA1 plays an important role in determination of the fate of cells exposed to ionizing radiation and double heterozygosity increases the risk of tumorigenesis. These findings also benefit understanding of the individual susceptibility to tumor initiation.</p
    corecore