1,091 research outputs found

    Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries.

    Get PDF
    Bicontinuous hierarchically porous Mn2O3 single crystals (BHP-Mn2O3-SCs) with uniform parallelepiped geometry and tunable sizes have been synthesized and used as anode materials for lithium-ion batteries (LIBs). The monodispersed BHP-Mn2O3-SCs exhibit high specific surface area and three dimensional interconnected bimodal mesoporosity throughout the entire crystal. Such hierarchical interpenetrating porous framework can not only provide a large number of active sites for Li ion insertion, but also good conductivity and short diffusion length for Li ions, leading to a high lithium storage capacity and enhanced rate capability. Furthermore, owing to their specific porosity, these BHP-Mn2O3-SCs as anode materials can accommodate the volume expansion/contraction that occurs with lithium insertion/extraction during discharge/charge processes, resulting in their good cycling performance. Our synthesized BHP-Mn2O3-SCs with a size of ~700 nm display the best electrochemical performance, with a large reversible capacity (845 mA h g(-1) at 100 mA g(-1) after 50 cycles), high coulombic efficiency (>95%), excellent cycling stability and superior rate capability (410 mA h g(-1) at 1 Ag(-1)). These values are among the highest reported for Mn2O3-based bulk solids and nanostructures. Also, electrochemical impedance spectroscopy study demonstrates that the BHP-Mn2O3-SCs are suitable for charge transfer at the electrode/electrolyte interface.This work was realized in the frame of a program for Changjiang Scholars and Innovative Research Team (IRT1169) of the Chinese Ministry of Education. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. T. Hasan acknowledges funding from a Royal Academy of Engineering Research Fellowship and EPSRC IAA Grant (GRASS). This work is also financially supported by the Ph.D. Programs Foundation of Ministry of Education of China (20120143120019), This work is also financially supported by Hubei Provincial Natural Science Foundation (2014CFB160) and Self-determined and Innovative Research Funds of the SKLWUT (2015-ZD-7). We thank J.L. Xie, X.Q. Liu and T.T. Luo for TEM analysis from the Research and Test Center of Materials, Prof. L.Q. Mai for EIS analysis from WUT-Harvard Joint Nano Key Laboratory at Wuhan University of Technology.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep1468

    Analysis by Surface Plasmon Resonance of the Influence of Valence on the Ligand Binding Affinity and Kinetics of an Anti-carbohydrate Antibody

    Get PDF
    The kinetics of ligand binding by Se155-4, an antibody specific for the Salmonella serogroup B O-polysaccharide, were studied by surface plasmon resonance. Because trace amounts of oligomers in Fab and single-chain antibody variable domain (scFv) preparations resulted in biphasic binding profiles that were difficult to analyze, all kinetic measurements were performed on purified monomeric fragments and, for certain mutant scFv, dimeric forms. Results obtained with monomeric forms indicated that the relatively low affinity of the antibody was due to rapid dissociation (koff approximately 0.25 s-1). Dimeric forms generally showed off-rates that were approximately 20-fold slower and a 5-fold increase in association rate constants to approximately 2 x 10(5) M-1 s-1. Although the association phases for scFv dimers showed good curve fitting to a one component interaction model, the dissociation phases were biphasic, presumably because the availability and accessibility of sites on the antigen always leads to some monovalent attachment. The fast off-rate for dimers was the same as the monomer off-rate. Se155-4 IgG off-rates were very similar to those observed for scFv dimer, whereas the onrate was the same as that obtained with Fab and scFv monomer

    Selection of antibody single-chain variable fragments with improved carbohydrate binding by phage display.

    Get PDF
    A single-chain variable fragment (Fv) version of a murine monoclonal antibody, Se155-4, specific for Salmonella serogroup B O-polysaccharide, was used as a model system for testing monovalent phage display as a route for enhancing the relatively low affinities that typify anti-carbohydrate antibodies. Random single-chain Fv mutant libraries generated by chemical and error-prone polymerase chain reaction methods were panned against the serogroup B lipopolysaccharide. Panning of a randomly mutated heavy chain variable domain library indicated selection for improved serogroup B binders and yielded six mutants, five of which showed wild type activity by enzyme immunoassay. Two of these were apparently selected on the basis of better functional single-chain Fv yield in Escherichia coli. A heavy chain mutation (Ile77-->Thr) in one mutant, 3B1, appeared to have a particularly dramatic effect, resulting in yields of approximately 120 mg/liter of functional periplasmic product. The sixth mutant, 4B2, had complementarity determining region 1 (CDR1) and CDR2 mutations and demonstrated 10-fold improved binding, by enzyme immunoassay, relative to the wild type. Extensive analysis of antigen-antibody interactions indicated that the improved binding properties of 4B2 were attributable to a higher association rate constant and interaction with an epitope that is larger than the trisaccharide recognized by the wild type. None of the mutations involved known trisaccharide contact residues; this was consistent with analysis of wild type and mutant single-chain Fvs by titration microcalorimetry. Examination of the structure indicated that two mutations in the heavy chain CDR2 provided improved surface complementarity between the protein and the extended epitope encompassing 2 additional hexose residues. However, introduction of only the CDR2 mutations into the wild type structure failed to confer the improved binding properties of 4B2, indicating an indirect effect by the more distant mutations. Panning of randomly mutated light chain variable domain and full-length single-chain Fv mutant libraries did not yield mutants with improved assembly or binding properties
    corecore