317 research outputs found

    Mycobiota community and fungal species response to development stage and fire blight disease in apples

    Get PDF
    Fire blight disease, caused by the bacterial pathogen Erwinia amylovora, has been a significant concern for over 50 countries worldwide. The efficacy of chemical pesticides currently available for disease control is limited. To address this issue, research is being conducted to explore environmentally friendly control methods, particularly biological control using beneficial microorganisms. However, there is limited research on the apple microbiota community and minimal research has been conducted on fungal communities that may exhibit reliable performance in apple trees. Therefore, our objective was to analyze the fungal communities present in apples at different developmental stages and in different tissues, aiming to identify potential biological control agents for fire blight disease. Our findings indicate that the fungal communities present in apple buds, flowers and leaves play an important role in inhibiting the invasion of E. amylovora. Specifically, we propose GS11 and Lipomyces starkeyi as potential keystone taxa that respond to fire blight disease. These findings provide insights into the continuity and discontinuity of fungal community structure in different developmental stages of apples and offer predictions for potential biological control agents for fire blight disease

    Anti-inflammatory activity of hydrosols from Tetragonia tetragonoides in LPS-induced RAW 264.7 cells

    Get PDF
    The present study was performed to investigate the anti-inflammatory activity of Tetragonia tetragonoides hydro- sols (TTH) and its underlying mechanism in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Gas chromatog- raphy (GC) coupled with mass spectrometry and retention index calculations showed that TTH were mainly com- posed of tetratetracontane (29.5 %), nonacosane (27.6 %), and oleamide (17.1 %). TTH significantly decreased the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-6, and IL-1β in LPS-stimulated RAW 264.7 cells. Consistent with these observations, TTH treatment decreased the protein expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). The molecular mechanism of its anti-inflamma- tory activity was found to be associated with inhibition of nuclear factor-kappa B (NF-κB) phosphorylation and nuclear translocation of NF-κB 65. Furthermore, TTH markedly suppressed the LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs). Taken together, these data indicate that TTH exerts an anti-inflam- matory activity by inhibiting the NF-κB and MAPK signaling pathways in LPS-stimulated RAW 264.7 cells

    Anti-inflammatory effect and mechanism of action of Lindera erythrocarpa essential oil in lipopolysaccharide-stimulated RAW264.7 cells

    Get PDF
    The aim of this study was to investigate the chemical constituents of Lindera erythrocarpa essential oil (LEO) by gas chromatography-mass spectrometry and evaluate their inhibitory effect on the expression of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Fifteen compounds, accounting for 63.7 % of the composition of LEO, were identified. The main compounds were nerolidol (18.73 %), caryophyllene (14.41 %), α-humulene (7.73 %), germacrene-D (4.82 %), and α-pinene (4.47 %). LEO significantly inhibited the expression of inducible nitric oxide (NO) synthase and cyclooxygenase-2, and subsequent production of NO and prostaglandin E2. In addition, it reduced the release of pro-inflammatory cytokines in LPS-activated RAW264.7 cells. The molecular mechanism underlying the effect of LEO was associated with inhibition of the phosphorylation of mitogen-activated protein kinase (MAPK). Furthermore, LEO inhibited LPS-induced phosphorylation and degradation of inhibitor of kappa B-α, which is required for the activation of the p50 and p65 nuclear factor (NF)-κB subunits in RAW264.7 cells. Taken together, these data suggest that LEO exerted its anti-inflammatory effect by downregulating LPS-induced production of pro-inflammatory mediators through the inhibition of NF-κB and MAPK signaling in RAW264.7 cells

    Anti-inflammatory effect of supercritical extract and its constituents from Ishige okamurae

    Get PDF
    The anti-inflammatory properties of the supercritical fluid extract of Ishige okamurae (SFEIO) on lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. The lipid profile of the SFEIO, reviled the presence of palmitic acid (220.2 mg/g), linoleic acid (168.0 mg/g), and oleic acid (123.0 mg/g). SFEIO was found to exert it’s anti-inflammatory effects through inhibiting nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 production in LPS-stimulated RAW 264.7 cells, without inducing cytotoxicity. SFEIO did not effect on the LPS-induced p38 kinase phosphorylation, whereas it attenuated the extracellular-related signaling kinase (ERK) and c-Jun N-terminal kinase (JNK) phosphorylation. Furthermore, SFEIO inhibited the LPS-induced IκB-α degradation and p50 NF-κB activation. These results suggest that SFEIO exerts its anti-inflammatory effects in LPS-activated RAW 264.7 cells by down-regulating the activation of ERK, JNK, and NF-κB

    Novel biomarker-based model for the prediction of sorafenib response and overall survival in advanced hepatocellular carcinoma: a prospective cohort study

    Get PDF
    Background Prediction of the outcome of sorafenib therapy using biomarkers is an unmet clinical need in patients with advanced hepatocellular carcinoma (HCC). The aim was to develop and validate a biomarker-based model for predicting sorafenib response and overall survival (OS). Methods This prospective cohort study included 124 consecutive HCC patients (44 with disease control, 80 with progression) with Child-Pugh class A liver function, who received sorafenib. Potential serum biomarkers (namely, hepatocyte growth factor [HGF], fibroblast growth factor [FGF], vascular endothelial growth factor receptor-1, CD117, and angiopoietin-2) were tested. After identifying independent predictors of tumor response, a risk scoring system for predicting OS was developed and 3-fold internal validation was conducted. Results A risk scoring system was developed with six covariates: etiology, platelet count, Barcelona Clinic Liver Cancer stage, protein induced by vitamin K absence-II, HGF, and FGF. When patients were stratified into low-risk (score ≤ 5), intermediate-risk (score 6), and high-risk (score ≥ 7) groups, the model provided good discriminant functions on tumor response (concordance [c]-index, 0.884) and 12-month survival (area under the curve [AUC], 0.825). The median OS was 19.0, 11.2, and 6.1 months in the low-, intermediate-, and high-risk group, respectively (P  0.05 between expected and observed values). Conclusions This new model including serum FGF and HGF showed good performance in predicting the response to sorafenib and survival in patients with advanced HCC.This work was funded by Doosan Yonkang Foundation (Grant No. 30–2016-0240), Liver Research Foundation of Korea as part of Bio Future Strategies Research Project, and Ewha Womans University research grant (2016). The funding bodies had no role in the design of the study, collection, analysis, and interpretation of data and in writing of the manuscript

    Effects of HA and NA glycosylation pattern changes on the transmission of avian influenza A(H7N9) virus in guinea pigs

    Get PDF
    AbstractAvian influenza H7N9 virus has posed a concern of potential human-to-human transmission by resulting in seasonal virus-like human infection cases. To address the issue of sustained human infection with the H7N9 virus, here we investigated the effects of hemagglutinin (HA) and neuraminidase (NA) N-linked glycosylation (NLG) patterns on influenza virus transmission in a guinea pig model. Based on the NLG signatures identified in the HA and NA genetic sequences of H7N9 viruses, we generated NLG mutant viruses using either HA or NA gene of a H7N9 virus, A/Anhui/01/2013, by reverse genetics on the 2009 pandemic H1N1 virus backbone. For the H7 HA NLG mutant viruses, NLG pattern changes appeared to reduce viral transmissibility in guinea pigs. Intriguingly, however, the NLG changes in the N9 NA protein, such as a removal from residue 42 or 66 or an addition at residue 266, increased transmissibility of the mutant viruses by more than 33%, 50%, and 16%, respectively, compared with a parental N9 virus. Given the effects of HA-NA NLG changes with regard to viral transmission, we then generated the HA-NA NLG mutant viruses harboring the H7 HA of double NLG addition and the N9 NA of various NLG patterns. As seen in the HA NLG mutants above, the double NLG-added H7 HA decreased viral transmissibility. However, when the NA NLG changes occurred by a removal of residue 66 and an addition at 266 were additionally accompanied, the HA-NA NLG mutant virus recovered the transmissibility of its parental virus. These demonstrate the effects of specific HA-NA NLG changes on the H7N9 virus transmission by highlighting the importance of a HA-NA functional balance

    An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment

    Get PDF
    The gastrointestinal tract is a challenging anatomical target for diagnostic and therapeutic procedures for bleeding, polyps and cancerous growths. Advanced endoscopes that combine imaging and therapies within the gastrointestinal tract provide an advantage over stand-alone diagnostic or therapeutic devices. However, current multimodal endoscopes lack the spatial resolution necessary to detect and treat small cancers and other abnormalities. Here we present a multifunctional endoscope-based interventional system that integrates transparent bioelectronics with theranostic nanoparticles, which are photoactivated within highly localized space near tumours or benign growths. These advanced electronics and nanoparticles collectively enable optical fluorescence-based mapping, electrical impedance and pH sensing, contact/temperature monitoring, radio frequency ablation and localized photo/chemotherapy, as the basis of a closed-loop solution for colon cancer treatment. In vitro, ex vivo and in vivo experiments highlight the utility of this technology for accurate detection, delineation and rapid targeted therapy of colon cancer or precancerous lesions.

    Differences in dietary patterns related to metabolic health by gut microbial enterotypes of Korean adults

    Get PDF
    Diet has a profound impact on the progression of metabolic syndrome (MetS) into various diseases. The gut microbiota could modulate the effect of diet on metabolic health. We examined whether dietary patterns related to MetS differed according to gut microbial enterotypes among 348 Korean adults aged 18–60 years recruited between 2018∼2021 in a cross-sectional study. The enterotype of each participant was identified based on 16S rRNA gut microbiota data. The main dietary pattern predicting MetS (MetS-DP) of each enterotype was derived using reduced-rank regression (RRR) models. In the RRR models, 27 food group intakes assessed by a semi-quantitative food frequency questionnaire and MetS prediction markers including triglyceride to high-density lipoprotein cholesterol (TG/HDL) ratio and homeostatic model assessment for insulin resistance (HOMA-IR) were used as predictor and response variables, respectively. The MetS-DP extracted in Bacteroides enterotype (B-type) was characterized by high consumption of refined white rice and low consumption of eggs, vegetables, and mushrooms. The MetS-DP derived among Prevotella enterotype (P-type) was characterized by a high intake of sugary food and low intakes of bread, fermented legumes, and fermented vegetables. The MetS-DP of B-type was positively associated with metabolic unhealthy status (ORT3 vs. T1 = 3.5; 95% CI = 1.5–8.2), comparing the highest tertile to the lowest tertile. Although it was not significantly associated with overall metabolic unhealthy status, the MetS-DP of P-type was positively associated with hyperglycemia risk (ORT3 vs. T1 = 6.2; 95% CI = 1.6–24.3). These results suggest that MetS-DP may differ according to the gut microbial enterotype of each individual. If such associations are found to be causal, personalized nutrition guidelines based on the enterotypes could be recommended to prevent MetS
    corecore