792 research outputs found

    Linearized Tensor Renormalization Group Algorithm for Thermodynamics of Quantum Lattice Models

    Full text link
    A linearized tensor renormalization group (LTRG) algorithm is proposed to calculate the thermodynamic properties of one-dimensional quantum lattice models, that is incorporated with the infinite time-evolving block decimation technique, and allows for treating directly the two-dimensional transfer-matrix tensor network. To illustrate its feasibility, the thermodynamic quantities of the quantum XY spin chain are calculated accurately by the LTRG, and the precision is shown to be comparable with (even better than) the transfer matrix renormalization group (TMRG) method. Unlike the TMRG scheme that can only deal with the infinite chains, the present LTRG algorithm could treat both finite and infinite systems, and may be readily extended to boson and fermion quantum lattice models.Comment: published versio

    Measurement of discrete energy-level spectra in individual chemically synthesized gold nanoparticles.

    Get PDF
    We form single-electron transistors from individual chemically-synthesized gold nanoparticles, 5-15 nm in diameter, with monolayers of organic molecules serving as tunnel barriers. These devices allow us to measure the discrete electronic energy levels of individual gold nanoparticles that are, by virtue of chemical synthesis, well-defined in their composition, size and shape. We show that the nanoparticles are non-magnetic and have spectra in good accord with random-matrix-theory predictions taking into account strong spin-orbit coupling.Comment: 15 pages, 5 figures; corrected typos, added journal referenc

    Ultrafast Charge Transfer in Atomically Thin MoS2/WS2 Heterostructures

    Full text link
    Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional (2D) layers, including graphene, hexagonal-boron nitride, and transition metal dichalcogenides (MX2), give rise to fascinating new phenomena. MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, because 2D MX2 monolayers can have an optical bandgap in the near-infrared to visible spectral range and exhibit extremely strong light-matter interactions. Theory predicts that many stacked MX2 heterostructures form type-II semiconductor heterojunctions that facilitate efficient electron-hole separation for light detection and harvesting. Here we report the first experimental observation of ultrafast charge transfer in photo-excited MoS2/WS2 heterostructures using both photoluminescence mapping and femtosecond (fs) pump-probe spectroscopy. We show that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled 2D layers. Such ultrafast charge transfer in van der Waals heterostructures can enable novel 2D devices for optoelectronics and light harvesting

    Quantum Compressed Sensing with Unsupervised Tensor-Network Machine Learning

    Full text link
    We propose tensor-network compressed sensing (TNCS) by combining the ideas of compressed sensing, tensor network (TN), and machine learning, which permits novel and efficient quantum communications of realistic data. The strategy is to use the unsupervised TN machine learning algorithm to obtain the entangled state Ψ|\Psi \rangle that describes the probability distribution of a huge amount of classical information considered to be communicated. To transfer a specific piece of information with Ψ|\Psi \rangle, our proposal is to encode such information in the separable state with the minimal distance to the measured state Φ|\Phi \rangle that is obtained by partially measuring on Ψ|\Psi \rangle in a designed way. To this end, a measuring protocol analogous to the compressed sensing with neural-network machine learning is suggested, where the measurements are designed to minimize uncertainty of information from the probability distribution given by Φ|\Phi \rangle. In this way, those who have Φ|\Phi \rangle can reliably access the information by simply measuring on Φ|\Phi \rangle. We propose q-sparsity to characterize the sparsity of quantum states and the efficiency of the quantum communications by TNCS. The high q-sparsity is essentially due to the fact that the TN states describing nicely the probability distribution obey the area law of entanglement entropy. Testing on realistic datasets (hand-written digits and fashion images), TNCS is shown to possess high efficiency and accuracy, where the security of communications is guaranteed by the fundamental quantum principles.Comment: 5+6 pages, 3+6 figures. Essential changes and new data were added to this new versio

    Efficacy of the Combination of Voriconazole and Caspofungin in Experimental Pulmonary Aspergillosis by Different Aspergillus Species

    Get PDF
    OBJECTIVES: Invasive pulmonary aspergillosis (IPA) caused by Aspergillus fumigatus, Aspergillus flavus, or Aspergillus niger is associated with high mortality. We evaluated the efficacy and compared the therapeutic effect differences of voriconazole (VRC) in combination with caspofungin (CAS) in transiently neutropenic rats infected by A. fumigatus, A. flavus, or A. niger. METHODS: Treatment groups consisted of VRC (10 mg/kg q12 h) monotherapy, CAS (1 mg/kg/day) monotherapy, combination of VRC (10 mg/kg q12 h) + CAS (1 mg/kg/day), and no drug for 10 consecutive days. The efficacy and the difference in the treatments were evaluated through prolongation of survival, reduction in serum galactomannan levels and residual fungal burden, and histological studies. RESULTS: For all the strains, the combination of VRC and CAS led to significant prolongation in survival (P < 0.05) and reduction in residual fungal burden (P < 0.05) compared with CAS alone, and decrease in serum galactomannan levels (P < 0.05) compared with either agent alone. The survival in the combined therapy groups was significantly improved compared to VRC monotherapy for the strains of A. flavus and A. niger (P < 0.05), but no significant difference for the strains of A. fumigatus (P > 0.05). CONCLUSIONS: Combination of VRC and CAS was synergistic in IPA by A. flavus and A. niger, but small efficacy benefits in IPA by A. fumigatus
    corecore