31,594 research outputs found
Mechanisms of Auger-induced chemistry derived from wave packet dynamics
To understand how core ionization and subsequent Auger decay lead to bond breaking in large systems, we simulate the wave packet dynamics of electrons in the hydrogenated diamond nanoparticle C_(197)H_(112). We find that surface core ionizations cause emission of carbon fragments and protons through a direct Auger mechanism, whereas deeper core ionizations cause hydrides to be emitted from the surface via remote heating, consistent with results from photon-stimulated desorption experiments [Hoffman A, Laikhtman A, (2006) J Phys Condens Mater 18:S1517–S1546]. This demonstrates that it is feasible to study the chemistry of highly excited large-scale systems using simulation and analysis tools comparable in simplicity to those used for classical molecular dynamics
Mass Shift and Width Broadening of J/psi in hot gluonic plasma from QCD Sum Rules
We investigate possible mass shift and width broadening of J/psi in hot
gluonic matter using QCD sum rule. Input values of gluon condensates at finite
temperature are extracted from lattice QCD data for the energy density and
pressure. Although stability of the moment ratio is achieved only up to T/Tc ~
1.05, the gluon condensates cause a decrease of the moment ratio, which results
in change of spectral properties. Using the Breit-Wigner form for the
phenomenological side, we find that mass shift of J/psi just above Tc can reach
maximally 200 MeV and width can broaden to dozens of MeV.Comment: 4 pages, 5 figures, version to appear in Physical Review Letter
Over-Confidence and Cycles in Real Estate Markets: Cases in Hong Kong and Asia
Studies on the calibration of subjective probabilities find that people tend to over-estimate the precision of their knowledge. In this paper we develop a semi-rational model and apply it to the real estate markets in Hong Kong and other Asian countries. The key point is that a person is rational about her/his private information until her/his private information is confirmed by a clearly defined market signal. Using a pre-sale as a mechanism of updating a developer's beliefs, this paper analyzes the impact of over-confidence on overbuilding and cycles in real estate markets. Our finding indicates that a pre-sale activity will increase the magnitude of over-building and over-confidence will increase the volatility in real estate markets. Our model also has implications to the well-established literature dealing with the issue of over-capacity in many industrial sectors.
Characterizing Ranked Chinese Syllable-to-Character Mapping Spectrum: A Bridge Between the Spoken and Written Chinese Language
One important aspect of the relationship between spoken and written Chinese
is the ranked syllable-to-character mapping spectrum, which is the ranked list
of syllables by the number of characters that map to the syllable. Previously,
this spectrum is analyzed for more than 400 syllables without distinguishing
the four intonations. In the current study, the spectrum with 1280 toned
syllables is analyzed by logarithmic function, Beta rank function, and
piecewise logarithmic function. Out of the three fitting functions, the
two-piece logarithmic function fits the data the best, both by the smallest sum
of squared errors (SSE) and by the lowest Akaike information criterion (AIC)
value. The Beta rank function is the close second. By sampling from a Poisson
distribution whose parameter value is chosen from the observed data, we
empirically estimate the -value for testing the
two-piece-logarithmic-function being better than the Beta rank function
hypothesis, to be 0.16. For practical purposes, the piecewise logarithmic
function and the Beta rank function can be considered a tie.Comment: 15 pages, 4 figure
Common Warm Dust Temperatures Around Main-sequence Stars
We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-K0) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (~190 K and ~60 K for the inner and outer dust components, respectively)—slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ~150 K can deposit particles into an inner/warm belt, where the small grains are heated to T_(dust)~ 190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-K0 stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon
Dimerization structures on the metallic and semiconducting fullerene tubules with half-filled electrons
Possible dimerization patterns and electronic structures in fullerene tubules
as the one-dimensional pi-conjugated systems are studied with the extended
Su-Schrieffer-Heeger model. We assume various lattice geometries, including
helical and nonhelical tubules. The model is solved for the half-filling case
of -electrons. (1) When the undimerized systems do not have a gap, the
Kekule structures prone to occur. The energy gap is of the order of the room
temperatures at most and metallic properties would be expected. (2) If the
undimerized systems have a large gap (about 1eV), the most stable structures
are the chain-like distortions where the direction of the arranged
trans-polyacetylene chains is along almost the tubular axis. The electronic
structures are ofsemiconductors due to the large gap.Comment: submitted to Phys. Rev. B, pages 15, figures 1
Critical behavior of charmonia across the phase transition: A QCD sum rule approach
We investigate medium-induced change of mass and width of J/psi and eta_c
across the phase transition in hot gluonic matter using QCD sum rules. In the
QCD sum rule approach, the medium effect on heavy quarkonia is induced by the
change of both scalar and twist-2 gluon condensates, whose temperature
dependences are extracted from the lattice calculations of energy density and
pressure. Although the stability of the operator product expansion side seems
to break down at T > 1.06Tc for the vector channel and T>1.04Tc for the
pseudoscalar channel, we find a sudden change of the spectral property across
the critical temperature Tc, which originates from an equally rapid change of
the scalar gluon condensate characterized by e-3p. By parameterizing the ground
state of the spectral density by the Breit-Wigner form, we find that for both
J/psi and eta_c, the masses suddenly decrease maximally by a few hundreds of
MeV and the widths broaden to ~100 MeV slightly above Tc. Implications for
recent and future heavy ion experiments are discussed.
We also carry out a similar analysis for charmonia in nuclear matter, which
could serve as a testing ground for observing the precursor phenomena of the
QCD phase transition. We finally discuss the possibility of observing the mass
shift at nuclear matter at the FAIR project at GSI.Comment: 18 pages, 21 figures, 2 figures are added and discussion on effect of
dynamical quarks is extended. version to appear in Phys.Rev.
Strange meson-nucleon states in the quark potential model
The quark potential model and resonating group method are used to investigate
the bound states and/or resonances. The model potential consists of
the t-channel and s-channel one-gluon exchange potentials and the confining
potential with incorporating the QCD renormalization correction and the
spin-orbital suppression effect in it. It was shown in our previous work that
by considering the color octet contribution, use of this model to investigate
the low energy elastic scattering leads to the results which are in pretty
good agreement with the experimental data. In this paper, the same model and
method are employed to calculate the masses of the bound systems.
For this purpose, the resonating group equation is transformed into a standard
Schr\"odinger equation in which a nonlocal effective interaction
potential is included. Solving the Schr\"odinger equation by the variational
method, we are able to reproduce the masses of some currently concerned
states and get a view that these states possibly exist as
molecular states. For the system, the same calculation gives no support to
the existence of the resonance which was announced
recently.Comment: 15 pages, 4 figure
- …