55,127 research outputs found

    Low Energy Precision Test of Supersymmetry

    Get PDF
    Supersymmetry (SUSY) remains one of the leading candidates for physics beyond the Standard Model, and the search for SUSY will be a central focus of future collider experiments. Complementary information on the viability and character of SUSY can be obtained via the analysis of precision electroweak measurements. In this review, we discuss the prospective implications for SUSY of present and future precision studies at low energy.Comment: 118 pages, review pape

    Dirac-Schr\"odinger equation for quark-antiquark bound states and derivation of its interaction kerne

    Full text link
    The four-dimensional Dirac-Schr\"odinger equation satisfied by quark-antiquark bound states is derived from Quantum Chromodynamics. Different from the Bethe-Salpeter equation, the equation derived is a kind of first-order differential equations of Schr\"odinger-type in the position space. Especially, the interaction kernel in the equation is given by two different closed expressions. One expression which contains only a few types of Green's functions is derived with the aid of the equations of motion satisfied by some kinds of Green's functions. Another expression which is represented in terms of the quark, antiquark and gluon propagators and some kinds of proper vertices is derived by means of the technique of irreducible decomposition of Green's functions. The kernel derived not only can easily be calculated by the perturbation method, but also provides a suitable basis for nonperturbative investigations. Furthermore, it is shown that the four-dimensinal Dirac-Schr\"odinger equation and its kernel can directly be reduced to rigorous three-dimensional forms in the equal-time Lorentz frame and the Dirac-Schr\"odinger equation can be reduced to an equivalent Pauli-Schr\"odinger equation which is represented in the Pauli spinor space. To show the applicability of the closed expressions derived and to demonstrate the equivalence between the two different expressions of the kernel, the t-channel and s-channel one gluon exchange kernels are chosen as an example to show how they are derived from the closed expressions. In addition, the connection of the Dirac-Schr\"odinger equation with the Bethe-Salpeter equation is discussed

    Renormalization of the Sigma-Omega model within the framework of U(1) gauge symmetry

    Full text link
    It is shown that the Sigma-Omega model which is widely used in the study of nuclear relativistic many-body problem can exactly be treated as an Abelian massive gauge field theory. The quantization of this theory can perfectly be performed by means of the general methods described in the quantum gauge field theory. Especially, the local U(1) gauge symmetry of the theory leads to a series of Ward-Takahashi identities satisfied by Green's functions and proper vertices. These identities form an uniquely correct basis for the renormalization of the theory. The renormalization is carried out in the mass-dependent momentum space subtraction scheme and by the renormalization group approach. With the aid of the renormalization boundary conditions, the solutions to the renormalization group equations are given in definite expressions without any ambiguity and renormalized S-matrix elememts are exactly formulated in forms as given in a series of tree diagrams provided that the physical parameters are replaced by the running ones. As an illustration of the renormalization procedure, the one-loop renormalization is concretely carried out and the results are given in rigorous forms which are suitable in the whole energy region. The effect of the one-loop renormalization is examined by the two-nucleon elastic scattering.Comment: 32 pages, 17 figure

    Strange meson-nucleon states in the quark potential model

    Get PDF
    The quark potential model and resonating group method are used to investigate the KˉN\bar{K}N bound states and/or resonances. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the confining potential with incorporating the QCD renormalization correction and the spin-orbital suppression effect in it. It was shown in our previous work that by considering the color octet contribution, use of this model to investigate the KNKN low energy elastic scattering leads to the results which are in pretty good agreement with the experimental data. In this paper, the same model and method are employed to calculate the masses of the KˉN\bar{K}N bound systems. For this purpose, the resonating group equation is transformed into a standard Schr\"odinger equation in which a nonlocal effective KˉN\bar{K}N interaction potential is included. Solving the Schr\"odinger equation by the variational method, we are able to reproduce the masses of some currently concerned KˉN\bar{K}N states and get a view that these states possibly exist as KˉN\bar{K}N molecular states. For the KNKN system, the same calculation gives no support to the existence of the resonance Θ+(1540)\Theta ^{+}(1540) which was announced recently.Comment: 15 pages, 4 figure

    Parity-Violating Electron Scattering as a Probe of Supersymmetry

    Get PDF
    We compute the one-loop supersymmetric (SUSY) contributions to the weak charges of the electron (QWeQ_W^e) and proton (QWpQ_W^p) using the Minimal Supersymmetric Standard Model (MSSM). These q2=0q^2=0 vector couplings of the Z0Z^0-boson to fermions will be determined in two fixed-target, parity-violating electron scattering experiments. The SUSY loop contributions to QWpQ_W^p and QWeQ_W^e can be substantial, leading to several percent corrections to the Standard Model values for these quantities. We show that the relative signs of the SUSY loop effects on QWeQ_W^e and QWpQ_W^p are correlated and positive over nearly all of the MSSM parameter space, whereas inclusion of R-parity nonconserving interactions can lead to opposite sign relative shifts in the weak charges. Thus, a comparison of QWpQ_W^p and QWeQ_W^e measurements could help distinguish between different SUSY scenarios.Comment: 4 pages, 2 figure

    Probing Supersymmetry with Neutral Current Scattering Experiments

    Get PDF
    We compute the supersymmetric contributions to the weak charges of the electron and proton in the framework of Minimal Supersymmetric Standard Model. We also consider the ratio of neutral current to charged current cross sections, R_nu and R_nubar at nu (nubar)-nucleus deep inelastic scattering, and compare the supersymmetric corrections with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement.Comment: 4 pages, contribution to the proceedings of CIPANP 2003 (May, 2003), New York Cit
    corecore