47,952 research outputs found

    Renormalization of the Sigma-Omega model within the framework of U(1) gauge symmetry

    Full text link
    It is shown that the Sigma-Omega model which is widely used in the study of nuclear relativistic many-body problem can exactly be treated as an Abelian massive gauge field theory. The quantization of this theory can perfectly be performed by means of the general methods described in the quantum gauge field theory. Especially, the local U(1) gauge symmetry of the theory leads to a series of Ward-Takahashi identities satisfied by Green's functions and proper vertices. These identities form an uniquely correct basis for the renormalization of the theory. The renormalization is carried out in the mass-dependent momentum space subtraction scheme and by the renormalization group approach. With the aid of the renormalization boundary conditions, the solutions to the renormalization group equations are given in definite expressions without any ambiguity and renormalized S-matrix elememts are exactly formulated in forms as given in a series of tree diagrams provided that the physical parameters are replaced by the running ones. As an illustration of the renormalization procedure, the one-loop renormalization is concretely carried out and the results are given in rigorous forms which are suitable in the whole energy region. The effect of the one-loop renormalization is examined by the two-nucleon elastic scattering.Comment: 32 pages, 17 figure

    Whole-brain patterns of 1H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies

    Get PDF
    Acknowledgements We thank Craig Lambert for his help in processing the MRS data. The study was funded by the Sir Jules Thorn Charitable Trust (grant ref: 05/JTA) and was supported by the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre and the Biomedical Research Unit in Lewy Body Dementia based at Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust and Newcastle University and the NIHR Biomedical Research Centre and Biomedical Research Unit in Dementia based at Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge.Peer reviewedPublisher PD

    Logarithmic temperature dependence of conductivity at half-integer filling factors: Evidence for interaction between composite fermions

    Full text link
    We have studied the temperature dependence of diagonal conductivity in high-mobility two-dimensional samples at filling factors ν=1/2\nu=1/2 and 3/2 at low temperatures. We observe a logarithmic dependence on temperature, from our lowest temperature of 13 mK up to 400 mK. We attribute the logarithmic correction to the effects of interaction between composite fermions, analogous to the Altshuler-Aronov type correction for electrons at zero magnetic field. The paper is accepted for publication in Physical Review B, Rapid Communications.Comment: uses revtex macro

    A Study of H2 Emission in Three Bipolar Proto-Planetary Nebulae: IRAS 16594-4656, Hen 3-401, and Rob 22

    Full text link
    We have carried out a spatial-kinematical study of three proto-planetary nebulae, IRAS 16594-4656, Hen 3-401, and Rob 22. High-resolution H2 images were obtained with NICMOS on the HST and high-resolution spectra were obtained with the Phoenix spectrograph on Gemini-South. IRAS 16594-4656 shows a "peanut-shaped" bipolar structure with H2 emission from the walls and from two pairs of more distant, point-symmetric faint blobs. The velocity structure shows the polar axis to be in the plane of the sky, contrary to the impression given by the more complex visual image and the visibility of the central star, with an ellipsoidal velocity structure. Hen 3-401 shows the H2 emission coming from the walls of the very elongated, open-ended lobes seen in visible light, along with a possible small disk around the star. The bipolar lobes appear to be tilted 10-15 deg with respect to the plane of the sky and their kinematics display a Hubble-like flow. In Rob 22, the H2 appears in the form of an "S" shape, approximately tracing out the similar pattern seen in the visible. H2 is especially seen at the ends of the lobes and at two opposite regions close to the unseen central star. The axis of the lobes is nearly in the plane of the sky. Expansion ages of the lobes are calculated to be approximately 1600 yr (IRAS 16594-4656), 1100 yr (Hen 3-401), and 640 yr (Rob 22), based upon approximate distances

    The Decay of Debris Disks around Solar-Type Stars

    Full text link
    We present a Spitzer MIPS study of the decay of debris disk excesses at 24 and 70 μ\mum for 255 stars of types F4 - K2. We have used multiple tests, including consistency between chromospheric and X-ray activity and placement on the HR diagram, to assign accurate stellar ages. Within this spectral type range, at 24 μ\mum, 13.6±2.8%13.6 \pm 2.8 \% of the stars younger than 5 Gyr have excesses at the 3σ\sigma level or more, while none of the older stars do, confirming previous work. At 70 μ\mum, 22.5±3.6%22.5 \pm 3.6\% of the younger stars have excesses at \ge 3 σ\sigma significance, while only 4.72.2+3.74.7^{+3.7}_{-2.2}% of the older stars do. To characterize the far infrared behavior of debris disks more robustly, we double the sample by including stars from the DEBRIS and DUNES surveys. For the F4 - K4 stars in this combined sample, there is only a weak (statistically not significant) trend in the incidence of far infrared excess with spectral type (detected fractions of 21.94.3+4.8%^{+4.8}_{-4.3}\%, late F; 16.53.3+3.9%^{+3.9}_{-3.3}\%, G; and 16.95.0+6.3%^{+6.3}_{-5.0}\%, early K). Taking this spectral type range together, there is a significant decline between 3 and 4.5 Gyr in the incidence of excesses with fractional luminosities just under 10510^{-5}. There is an indication that the timescale for decay of infrared excesses varies roughly inversely with the fractional luminosity. This behavior is consistent with theoretical expectations for passive evolution. However, more excesses are detected around the oldest stars than is expected from passive evolution, suggesting that there is late-phase dynamical activity around these stars.Comment: 46 pages. 7 figures. Accepted to Ap

    Fermi gas in harmonic oscillator potentials

    Full text link
    Assuming the validity of grand canonical statistics, we study the properties of a spin-polarized Fermi gas in harmonic traps. Universal forms of Fermi temperature TFT_F, internal energy UU and the specific heat per particle of the trapped Fermi gas are calculated as a {\it function} of particle number, and the results compared with those of infinite number particles.Comment: 8 pages, 1 figure, LATE
    corecore