23 research outputs found

    Prediction of strawberry yield based on receptacle detection and Bayesian inference

    Get PDF
    The receptacle of strawberry is a more direct part than the flower for predicting yield as they eventually become fruits. Thus, we tried to predict the yield by combining an AI technique for receptacle detection in images and statistical analysis on the relationship between the number of receptacles detected and the strawberry yield over a period of time. Five major cultivars were cultivated to consider the cultivar characteristics and environmental factors for two years were collected to consider the climate difference. Faster R–CNN based object detector was used to estimate the number of receptacles per strawberry plant in given two-dimensional images, which achieved a mAP of 0.6587 for our dataset. However, not all receptacles appear on the two-dimensional images, and Bayesian analysis was used to model the uncertainty associated with the number of receptacles missed by the AI. After estimating the probability of fruiting per receptacle, prediction models for the total strawberry yield at the end of harvest season were evaluated. Even though the detection accuracy was not perfect, the results indicated that counting the receptacles by object detection and estimating the probability of fruiting per receptacle by Bayesian modeling are more useful for predicting the total yield per plant than knowing its cumulative yield during the first month

    Estimating the impact of environmental management on strawberry yield using publicly available agricultural data in South Korea

    No full text
    Advanced information and communication technologies (ICTs) have made data collection more efficient for agricultural studies. Using publicly available database in South Korea, we estimated the relationship between the management of air temperature and relative humidity and the strawberry yield during two harvest seasons. Longitudinal data of multiple greenhouses were merged and processed, and mixed-effects models were applied to account both observed and unobserved factors across the greenhouses. The averages of air temperature and relative humidity inside each greenhouse do not take volatility of the time-varying variables into consideration, so we assessed the management of each greenhouse by the percent of time that air temperature between 15 °C and 20 °C (denoted as T%) and the percent of time that relative humidity between 0% and 50% (denoted by H%). The statistical models estimated that the strawberry yield decreases with respect to the number of days since harvest began and the rate of decrease is slower when T% and H% are higher. This study used large-scale multilocation data to provide the practical suggestion that air temperature and relative humidity should be maintained within the optimal ranges to mitigate the loss of strawberry yield especially at the later phase of a harvest season

    Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

    No full text
    This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage

    Characteristics and Trends of Strawberry Cultivars throughout the Cultivation Season in a Greenhouse

    No full text
    Each strawberry (Fragaria × ananassa) cultivar has its own growth and yield characteristics. However, the characteristics of many cultivars have not been determined at a consistent time and place, making direct comparative analysis difficult. The objective of this study was to identify characteristics and trends of five Korean strawberry cultivars in the same environment during an entire season. Therefore, environmental factors such as daily average air temperature, daily average relative humidity, daily average solar radiation, daily soil temperature, daily soil water content, daily soil electrical conductivity (EC), plant growth characteristics such as the number of leaves, plant height, leaf length, leaf width, and crown diameter, and productivity characteristics such as flowering and fruiting were measured to investigate the possible correlations of the data over one season. The vegetative growth of “Seolhyang” and “Keumsil” was greater than that of “Jukhyang” and “Maehyang”. The yield of “Arihyang” was greater than that of all other cultivars. “Arihyang” also presented the greatest weight per number of fruits. Among environmental factors, higher variability in air temperature and soil water content was correlated to lower total fresh weight in the following week at different degrees for each cultivar. Among the cultivars, the time to the first flowering was delayed by about seven days when the number of leaves increased by one and was reduced by one day per 1 cm increase in plant height. The total fresh weight was enhanced up to 271 g per experimental unit, while the average number of leaves increased by one. The results indicate that the data can be used by those who need information regarding the characteristics of the strawberry cultivars through direct comparative analysis

    Hybrid skin chips for toxicological evaluation of chemical drugs and cosmetic compounds

    No full text
    Development of drugs and cosmetics for topical application require safety tests in skin models. However, current skin models, such as skin cell sheets and artificial tissue-engineered skin, do not allow sophisticated toxicological evaluations (e.g., sensory irritation, hepatotoxicity). Animal models are prohibited worldwide for testing cosmetics. Therefore, reliable human skin models that recapitulate physiological events in skin tissue need to be established under in vitro settings. In this study, hybrid human skin models that enable delicate toxicological evaluations of drugs and cosmetic compounds are demonstrated. To recapitulate skin cornification, keratinocytes in the top layer of a vertical microfluidic chip were cultured at the air-liquid interface. For the skin-nerve hybrid model, differentiated neural stem cells in 3D collagen were positioned adjacent to and right below the skin layer. This model enables real-time quantitative skin sensitization analysis following chemical treatments by detecting alterations in neuronal activity in combination with a calcium imaging technique. For the skin-liver model, hepatic cells derived from pluripotent stem cells were cultured in 3D collagen distant from the skin layer. Potential hepatotoxicity of cutaneously applied chemicals in this model can be evaluated by quantification of glutathione and reactive oxygen species. Our study suggests that 3D hybrid skin chips would provide useful human skin models in pharmaceutical and cosmetic industries.11Nscopu

    Tissue Tapes—Phenolic Hyaluronic Acid Hydrogel Patches for Off-the-Shelf Therapy

    Get PDF
    © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimHydrogels have been applied to improve stem cell therapy and drug delivery, but current hydrogel-based delivery methods are inefficient in clinical settings due to difficulty in handling and treatment processes, and low off-the-shelf availability. To overcome these limitations, an adhesive hyaluronic acid (HA) hydrogel patch is developed that acts as a ready-to-use tissue tape for therapeutic application. The HA hydrogel patches functionalized with phenolic moieties (e.g., catechol, pyrogallol) exhibit stronger tissue adhesiveness, greater elastic modulus, and increased off-the-shelf availability, compared with their bulk solution gel form. With this strategy, stem cells are efficiently engrafted onto beating ischemic hearts without injection, resulting in enhanced angiogenesis in ischemic regions and improving cardiac functions. HA hydrogel patches facilitate the in vivo engraftment of stem cell–derived organoids. The off-the-shelf availability of the hydrogel patch is also demonstrated as a drug-loaded ready-made tissue tape for topical drug delivery to promote wound healing. Importantly, the applicability of the cross-linker-free HA patch is validated for therapeutic cell and drug delivery. The study suggests that bioinspired phenolic adhesive hydrogel patches can provide an innovative method for simple but highly effective cell and drug delivery, increasing the off-the-shelf availability—a critically important component for translation to clinical settings11sciescopu

    Development of a semi-open chamber system for the gas exchange measurement of whole-canopy under steady and unsteady states in cucumber seedlings

    No full text
    Abstract Background Large-scale data on the photosynthetic characteristics of whole crop canopy is crucial for improving yield. However, current data collection methods remain challenging, and the time constraints associated with photosynthetic data collection further complicate matters. Developing a practical yet easy-to-use tool for collecting whole-canopy data is essential to address these challenges. Furthermore, it is necessary to obtain instantaneous measurements of photosynthetic rate over a wide range of CO2 concentrations under an unsteady state to enable faster data collection and obtain reliable biochemical limits of carbon assimilation. This study developed a semi-open chamber system with steady and unsteady state measurement techniques to collect biochemical photosynthetic data from an entire cucumber canopy, emphasizing the correction procedures for CO2 concentration of unsteady state measurements applicable regardless of chamber scale. Results After constructing a semi-open chamber system, we described how to correct measurement errors according to chamber volume. In order to assess the accuracy of the newly developed system, an analysis was conducted to determine the overall measurement error resulting from variations in the reference, sample CO2 concentration, and leakage flow rate. The total measurement error was accurate to no more than 10%. Furthermore, the difference between the photosynthetic rate of the single leaf and that of the whole-canopy was not significant in Rubisco activity-limited carboxylation range. In addition, the Farquhar–von Caemmerer–Berry (FvCB) model parameters and the photosynthetic rate estimation values were compared to evaluate the steady- and unsteady state measurement methods between the cucumber seedlings' single-leaf and whole-canopy. The average root mean square error of the FvCB model in the steady (standard A-Ci response) and unsteady states (800 to 400 ramp) of the chambers was 1.4 and 2.3, respectively. Results show that the developed system is suitable for measuring the gas exchange rate of the cucumber canopy. Conclusions We demonstrate the correction method for measurement errors to enable the gas exchange rate of the whole-canopy even in an unsteady state. The correction method of the measurement system of the gas exchange rate for the whole- canopy can be applied regardless of the volume of the chamber, and it can be applied simply to other chamber systems. In addition, an unsteady state measurement method for fast data collection was also applicable. However, it was deemed necessary to identify a more optimal measurement range by conducting measurements across a broader range of values

    Evaluation of Growth and Photosynthetic Rate of Cucumber Seedlings Affected by Far-Red Light Using a Semi-Open Chamber and Imaging System

    No full text
    Far-red light was excluded in photosynthetic photon flux; however, recent studies have shown that it increases photosynthetic capacity. In addition, there were few studies on the whole canopy photosynthetic rate and continuous changes of morphology on cucumber seedlings affected by far-red light. This study evaluated the effect of conventional white LEDs adding far-red light on cucumber seedlings using a semi-open chamber system for the measurement of the whole canopy gas exchange rate, and the Raspberry Pi-based imaging system for the analysis of a continuous image. In the image, through the imaging system, it was confirmed that far-red light promoted the germination rate of cucumber seedlings and enhanced early growth. However, the dry weight of the shoot and root did not increase. The measured net apparent CO2 assimilation rate was improved by an increasing leaf area during the cultivation period. The conventional white LED light source with added far-red light increased the photosynthetic rate of cucumber seedlings’ whole canopy. However, at the early seedling stage, plant height and leaf area of the whole canopy was increased by far-red light, and it was revealed that the image data saturated faster. It was considered that the photosynthetic efficiency decreased due to a shading effect of the limited planting density of the cell tray. The results found that using appropriate far-red light, considering planting density, could increase the photosynthetic rate of the whole canopy of crops, thereby promoting crop growth, but it was judged that the use of far-red light in the early growth stage of cucumber seedlings should be considered carefully

    Three-dimensional heart extracellular matrix enhances chemically induced direct cardiac reprogramming

    No full text
    © 2022 The Authors.Direct cardiac reprogramming has emerged as a promising therapeutic approach for cardiac regeneration. Full chemical reprogramming with small molecules to generate cardiomyocytes may be more amenable than genetic reprogramming for clinical applications as it avoids safety concerns associated with genetic manipulations. However, challenges remain regarding low conversion efficiency and incomplete cardiomyocyte maturation. Furthermore, the therapeutic potential of chemically induced cardiomyocytes (CiCMs) has not been investigated. Here, we report that a three-dimensional microenvironment reconstituted with decellularized heart extracellular matrix can enhance chemical reprogramming and cardiac maturation of fibroblasts to cardiomyocytes. The resultant CiCMs exhibit elevated cardiac marker expression, sarcomeric organization, and improved electrophysiological features and drug responses. We investigated the therapeutic potential of CiCMs reprogrammed in three-dimensional heart extracellular matrix in a rat model of myocardial infarction. Our platform can facilitate the use of CiCMs for regenerative medicine, disease modeling, and drug screening.11Nsciescopu
    corecore