77 research outputs found

    Sciences for The 2.5-meter Wide Field Survey Telescope (WFST)

    Full text link
    The Wide Field Survey Telescope (WFST) is a dedicated photometric survey facility under construction jointly by the University of Science and Technology of China and Purple Mountain Observatory. It is equipped with a primary mirror of 2.5m in diameter, an active optical system, and a mosaic CCD camera of 0.73 Gpix on the main focus plane to achieve high-quality imaging over a field of view of 6.5 square degrees. The installation of WFST in the Lenghu observing site is planned to happen in the summer of 2023, and the operation is scheduled to commence within three months afterward. WFST will scan the northern sky in four optical bands (u, g, r, and i) at cadences from hourly/daily to semi-weekly in the deep high-cadence survey (DHS) and the wide field survey (WFS) programs, respectively. WFS reaches a depth of 22.27, 23.32, 22.84, and 22.31 in AB magnitudes in a nominal 30-second exposure in the four bands during a photometric night, respectively, enabling us to search tremendous amount of transients in the low-z universe and systematically investigate the variability of Galactic and extragalactic objects. Intranight 90s exposures as deep as 23 and 24 mag in u and g bands via DHS provide a unique opportunity to facilitate explorations of energetic transients in demand for high sensitivity, including the electromagnetic counterparts of gravitational-wave events detected by the second/third-generation GW detectors, supernovae within a few hours of their explosions, tidal disruption events and luminous fast optical transients even beyond a redshift of 1. Meanwhile, the final 6-year co-added images, anticipated to reach g about 25.5 mag in WFS or even deeper by 1.5 mag in DHS, will be of significant value to general Galactic and extragalactic sciences. The highly uniform legacy surveys of WFST will also serve as an indispensable complement to those of LSST which monitors the southern sky.Comment: 46 pages, submitted to SCMP

    Growth of Spirulina platensis enhanced under intermittent illumination

    No full text
    The growth characteristics of microalgae under different light conditions (continuous or intermittent) are essential information for photobioreactor design and operation. In this study, we constructed a thin-layer (10 mm) flat plate photobioreactor device with a light/dark (L/D) alternation system to investigate the growth of Spirulina platensis under two different light regimes: (1) continuous illumination in a wide range of light intensities (1.00-77.16 mW cm(-2)); (2) intermittent illumination in medium frequency (0.01-20 Hz). Specific growth rate and light efficiency based on biomass production were determined for each round of experiment. Four regions (light limited region, intermediate region, light saturated region and light inhibition region) were recognized according to the results under continuous illumination. Under intermittent illumination, when L/D frequency increased from 0.01 Hz to 20 Hz, specific growth rate and light efficiency were enhanced. However, the enhancement was different, depending on the applied light intensity and light fraction. The higher the light intensity, the greater the enhancement would be when L/D frequency increased from 0.01 Hz to 20 Hz; and the higher the light intensity, the lower the light fractions is needed to maintain light efficiency as high as that under continuous illumination in light limited region. (C) 2010 Elsevier B.V. All rights reserved

    Bioprocess. Biosyst. Eng.

    No full text
    One simple but efficient carbon-supplying device was designed and developed, and the correlative carbon-supplying technology was described. The absorbing characterization of this device was studied. The carbon-supplying system proved to be economical for large-scale cultivation of Spirulina sp. in an outdoor raceway pond, and the gaseous carbon dioxide absorptivity was enhanced above 78%, which could reduce the production cost greatly.One simple but efficient carbon-supplying device was designed and developed, and the correlative carbon-supplying technology was described. The absorbing characterization of this device was studied. The carbon-supplying system proved to be economical for large-scale cultivation of Spirulina sp. in an outdoor raceway pond, and the gaseous carbon dioxide absorptivity was enhanced above 78%, which could reduce the production cost greatly

    Identifying Ecological Security Patterns Meeting Future Urban Expansion in Changsha–Zhuzhou–Xiangtan Urban Agglomeration, China

    No full text
    Ecological security patterns (ESPs) provide a solution for balancing the conflicts between ecological conservation and socio-economic development and maintaining sustainable regional development. Identifying sustainable ESPs should be a matter given attention to in order to meet future urban expansion needs. Based on multi-source eco-environmental datasets and remote sensing (RS) containing the history of land-use patterns, our study incorporated future land-use patterns into the ESP identification framework to reduce the potential impact of future urban expansion on the identified ESPs (i.e., ecological corridors and nodes) and to reserve space for future urban development from an urban development perspective. Considering the Changsha–Zhuzhou–Xiangtan (CZX) urban agglomeration, the results show that 57 corridors are extracted, within which 36 key corridors are mainly distributed in the Lukou and Wangcheng districts and Xiangtan and Changsha counties; an additional 21 potential corridors are mainly distributed in the urban built-up area and these corridors connect to Xiangjiang River or its tributary. In addition, 18 pinch points were identified, mainly located adjacent to the Xiangjiang River, Liuyang River, and Laodao River; 9 barrier points are distributed at the junctions of the main roads. A comparison of ESP identification with and without simulated land-use patterns showed the incorporation of future land-use patterns favoured sustainable ESP construction. Furthermore, we discuss the rationality and application of ESP identification from an urban development perspective and emphasize the trade-off between future land-use patterns and ecological conservation, better reflecting the forward-looking thinking of spatial planning

    Study on the destabilization mixing in the flat plate photobioreactor by means of CFD

    No full text
    One destabilizing structure applied in the flat plate photobioreactor was designed, and the flow field and particle trajectory in it were simulated by means of CFD (computational fluid dynamics) to optimize structural parameters of photobioreactor. The results showed that the vertical velocity along the light path was produced in the condition of destabilization, which helps to achieve homogenous mixing of medium needed for microalgae growth. The fluid micelle in the flow field waved regularly, which made the algae cell transmitted between light and dark area and enhance the efficiency of photosynthesis. This destabilizing structure had a great potential to be used in the photobioreactor design. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved

    An Effective Device for Gas-Liquid Oxygen Removal in Enclosed Microalgae Culture

    No full text
    A high-performance gas-liquid transmission device (HPTD) was described in this paper. To investigate the HPTD mass transfer characteristics, the overall volumetric mass transfer coefficients, K(La,CO2)(A) for the absorption of gaseous CO(2) and K(La,O2)(D) for the desorption of dissolved O(2) were determined, respectively, by titration and dissolved oxygen electrode. The mass transfer capability of carbon dioxide was compared with that of dissolved oxygen in the device, and the operating conditions were optimized to suit for the large-scale enclosed micro-algae cultivation. Based on the effectiveness evaluation of the HPTD applied in one enclosed flat plate Spirulina culture system, it was confirmed that the HPTD can satisfy the demand of the enclosed system for carbon supplement and excessive oxygen removal

    Controlling factors on the submarine canyon system: A case study of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea

    No full text
    Based on an integrated analysis of high-resolution 2D/3D seismic data and drilling results, this study analyzes the tectonicsedimentary evolution of the Qiongdongnan Basin (QDNB) since the late Miocene, and discusses the controlling factors on the formation and development of the Central Canyon System (CCS). The sediment failures caused by the relative sea level falling might have discharged deposits from the slope to the canyon. The two suits of the infillings, i.e., turbidites and mass transport complex (MTC), were derived from the northwestern source and northern source, respectively. The sediment supplies, which differ significantly among different areas, might have led to the variations observed in the internal architectures. Tectonic transformation around 11.6 Ma had provided the tectonic setting for the CCS and formed an axial sub-basin in the central part of the Changchang Depression, which could be called the rudiment of the CCS. The tectonic activity of the Red River Fault (RRF) at about 5.7 Ma might have strengthened the hydrodynamics of the deposits at the junction of the Yinggehai Basin (YGHB) and the QDNB to trigger a high-energy turbidity current. The MTC from the northern continental slope system might have been constrained by the Southern Uplift, functioning as a bather for the infillings of the CCS. Thanks to a sufficient sediment supply during the Holocene period and the paleo-seafloor morphology, the relief of modern central canyon with the starving landform in the eastern Changchang Depression might have been accentuated by deposition of sediments and vertical growth along the canyon flanks, where collapse deposits were widely developed. Corresponding to the segmentation of the CCS, the forming mechanisms of the canyon between the three segments would be different. The turbidite channel in the head area had likely been triggered by the abundant sediment supply from the northwestern source together with the fault activity at about 5.7 Ma of the RRF. The formation and evolution of the canyon in the western segment were caused by combined effects of the turbidite channel from the northwestern source, the MTC from the northern continental slope, and the paleo-seafloor geomorphology. In the eastern segment, the canyon was constrained by the tectonic transformation occurring at approximately 11.6 Ma and the insufficient sediment supply from the wide-gentle slope

    The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea

    No full text
    The submarine canyons as the important element of the source to sink have attracted the widespread interests in studying their morphologic features, stratigraphic frames, depositional architectures, as well as the related depositional model, hydrodynamic simulation, and hydrocarbon exploration. The Central Canyon System, a large axial submarine canyon, in the Qiongdongnan Basin is developed in Neogene passive continental margin of northern South China Sea, which is paralleled to the shelf break with an "Sshaped" geometry and an NE-NEE orientation. Based on the integrated analysis of high-resolution 2D/3D seismic data and well log data, the whole canyon could be divided into three segments from west to east through its distinct morphological and depositional architecture characteristics, the head area, the western segment and the eastern segment. The canyon shows the classical U-shaped morphology in seismic profiles, and the infillings are composed of a suit of turbidite channel complex in the head area. In the western segment, the canyon demonstrates the sinuous geometry and multiple-shaped morphology in seismic profiles. Four complexes of turbidite channel and mass transport complex (MTC) are observed, which could constitute into two stratigraphic cycles. The canyon in the eastern segment shows V-shaped morphology with steep flanks and a narrow and straight course, which is composed of collapse deposits in the flanks and the sheet sand-MTC complex. The sediment supply, northern continental slope system, paleo-geomorphic characteristics and tectonic setting in the Qiongdongnan Basin are considered as the controlling factors on the development and evolution of the Central Canyon System, each of them have different influences in the three segments. The turbidite channel in the head area was triggered by the abundant sediment supply from western source together with the fault activity at 5.7 Ma of the Red River Fault. The evolution of the canyon in the western segment should be the combined effects of the turbidite channel from western source, the mass transport complex from the northern continental slope, and the paleo-seafloor geomorphology. In the eastern segment, the canyon should be constrained by the semi-closed subbasin in eastern Qiongdongnan Basin corresponding to the tectonic transformation at about 11.6 Ma. This unique submarine canyon in the Qiongdongnan Basin is suggested to be characterized by axial gravity flow, ascribing to different gravity deposits originated from different sediment supplies and the tectonic activities. (C) 2013 Elsevier Ltd. All rights reserved
    corecore