6 research outputs found

    Immunoregulatory functions and therapeutic potential of natural killer cell-derived extracellular vesicles in chronic diseases

    Get PDF
    Extracellular vesicles (EVs) have been proven to play a significant immunoregulatory role in many chronic diseases, such as cancer and immune disorders. Among them, EVs derived from NK cells are an essential component of the immune cell functions. These EVs have been demonstrated to carry a variety of toxic proteins and nucleic acids derived from NK cells and play a therapeutic role in diseases like malignancies, liver fibrosis, and lung injury. However, natural NK-derived EVs (NKEVs) have certain limitations in disease treatment, such as low yield and poor targeting. Concurrently, NK cells exhibit characteristics of memory-like NK cells, which have stronger proliferative capacity, increased IFN-γ production, and enhanced cytotoxicity, making them more advantageous for disease treatment. Recent research has shifted its focus towards engineered extracellular vesicles and their potential to improve the efficiency, specificity, and safety of disease treatments. In this review, we will discuss the characteristics of NK-derived EVs and the latest advancements in disease therapy. Specifically, we will compare different cellular sources of NKEVs and explore the current status and prospects of memory-like NK cell-derived EVs and engineered NKEVs

    Determination of CH330331, a novel 4-anilinoquinazoline inhibitor of epidermal growth factor receptor tyrosine kinase, in human Caco-2 monolayers by high performance liquid chromatography with ultraviolet detection : application to a trans-epithelial transport study

    No full text
    4-Anilinoquinazolines (e.g. Iressa and Glivec) are a class of epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors widely used to treat non-small cell lung cancer and other tumors. However, low clinical response rate, resistance, and host toxicity of currently available EGFR-TK inhibitors prompt the development of second generation of TK inhibitors with improved efficacy, selectivity, and less resistance. CH330331 is a recently synthesized novel 4-anilinoquinazoline analog with confirmed anticancer activity in vitro and in vivo. To predict its oral pharmacokinetic behavior and transport nature in the intestine before entering clinical trials, we have developed and validated a high performance liquid chromatographic (HPLC) method for the determination of CH330331 in Caco-2 (a human colon cancer cell line) monolayers. The developed HPLC method was sensitive and reliable, with acceptable accuracy (90-110% of nominal values) and precision (intra- and inter-assay R.S.D. < 10%). The total running time was within 10 min, with acceptable separation of the target analytes. The lower limit of quantitation (LLOQ) value for CH330331 was 200 ng/ml when an aliquot of 100 μl sample was injected onto the HPLC. The validated HPLC method was applied to characterize the epithelial transport of CH330331 in Caco-2 monolayers. The transport of CH330331 across the Caco-2 monolayers from the apical to basolateral side was 8- to 10-fold higher than that from the basolateral to apical side. Co-incubation of sodium azide or MK-571, but not verapamil, significantly inhibited the apical to basolateral transport of CH330331. These findings provide initial evidence that the intestinal absorption of CH330331 is mediated by an active mechanism. Further studies are required to explore the interaction of CH330331 with ATP-binding cassette transporters and the possible influence on its pharmacokinetics and pharmacodynamic

    Hypouricemic and Nephroprotective Effects of an Active Fraction from Polyrhachis Vicina Roger On Potassium Oxonate-Induced Hyperuricemia in Rats

    No full text
    Background/Aims: The objective of this study is to evaluate the hypouricemic and nephroprotective effects of an active fraction from Polyrhachis vicina Roger (AFPR) in potassium oxonate-induced hyperuricemic rats. Methods: Hyperuricemia was induced by potassium oxonate in male rats. AFPR was orally administered to hyperuricemic rats for 12 consecutive weeks. Serum, liver and kidney samples were collected for effects and mechanism analysis. The levels of serum uric acid (SUA) were measured by the phosphotungstic acid method, xanthine oxidase (XOD) activity in the hepatic and serum samples were measured by ultraviolet spectrophotometry, serum levels of interleukin-1 (IL-1β), interleukin-1 (IL-6) and tumor necrosis factor-α (TNF-α) were measured by ELISA, the levels of serum creatinine (SCr), blood urea nitrogen (BUN), super oxide dismutase (SOD) and malondialdehyde (MDA) in serum were determined by colorimetric method. Protein expression of renal URAT1, GLUT9, and OAT1 were analyzed by Western blot. Results: AFPR significantly decreased the levels of SUA, serum and hepatic XOD, SCr, BUN, and MDA as well as increased SOD. In addition, AFPR treatment significantly reduced the levels of proinflammatory cytokines in serum, including IL-1β, IL-6 and TNF-α. Moreover, we found the significant decrease in protein expression of URAT1 and GLUT9, and the significant increase in protein expression of OAT1 in the kidney in AFPR treated groups compared to the model groups of hyperuricemia. Conclusion: These findings suggest that AFPR has anti-hyperuricemic activity attributed to the inhibition of uric acid generation in the liver and probably to the enhancement of urate excretion in the kidney, and possess nephroprotective effect in hyperuricemic rats due to its anti-inflammatory and antioxidant activities

    Association of LEPR and ANKK1 gene polymorphisms with weight gain in epilepsy patients receiving valproic acid

    No full text
    Background: Weight gain is the most frequent adverse effect of valproic acid (VPA) treatment, resulting in poor compliance and many endocrine disturbances. Similarities in the weight change of monozygotic twins receiving VPA strongly suggests that genetic factors are involved in this effect. However, few studies have been conducted to identify the relevant genetic polymorphisms. Additionally, the causal relationship between the VPA concentration and weight gain has been controversial. Thus, we investigated the effects of single nucleotide polymorphisms (SNPs) in several appetite stimulation and energy homeostasis genes and the steady state plasma concentrations (Css) of VPA on the occurrence of weight gain in patients. Methods: A total of 212 epilepsy patients receiving VPA were enrolled. Nineteen SNPs in 11 genes were detected using the Sequenom MassArray iPlex platform, and VPA Css was determined by high-performance liquid chromatography (HPLC). Results: After 6 months of treatment, 20.28% of patients were found to gain a significant amount of weight (weight gained ≥7%). Three SNPs in the leptin receptor (LEPR), ankyrin repeat kinase domain containing 1 (ANKK1), and α catalytic subunit of adenosine monophosphate-activated protein kinase (AMPK) showed significant associations with VPA-induced weight gain (p Conclusions: LEPR and ANKK1 genetic polymorphisms may have value in predicting VPA-induced weight gain.</p
    corecore